379
0,1
2016-11-02
ЭТО ВАЖНО ЗНАТЬ! Зачем нужны антиоксиданты
Существование человека в условиях современной техногенной цивилизации, нарушение веками складывавшихся между людьми и природой отношений, неизбежно приводит к постоянному возникновению стрессовых ситуаций, что приводит к их накоплению, превращению в неотъемлемый компонент существования и, в конечном счете, к развитию серьезных функциональных расстройств организма.
Нарушение обмена веществ и энергии, накопление активных повреждающих агентов — так называемых ''свободных радикалов'', инициирующих развитие заболеваний и психо-эмоционального дискомфорта, получило название ''оксидативного стресса''. Хронический стресс приводит к угнетению иммунитета, дискоординации в работе органов и систем, а следовательно, к дисгармонии в организме.
Ограничение возможностей цивилизованного человека общаться с живой природой приводит к тому, что мы живем в искусственном мире и имеем искусственное здоровье, поддерживаемое экологически загрязненными продуктами питания и синтезированными химическим путем лекарственными препаратами, употребление которых неизбежно вызывает развитие побочных эффектов.
Ученые установили, что в организме человека под воздействием перечисленных выше факторов, происходит образование так называемых ''свободных радикалов'', которые ответственны за ускоренное разрушение и деформацию клеток организма.
Что такое свободный радикал?
Свободный радикал образуется в тот момент, когда кислород, участвующий в процессе метаболизма, теряет электрон.
Пытаясь возместить потерю электрона, свободный радикал отбирает электрон, например, у молекулы, входящей в состав клеточной мембраны, превращая ее в новый свободный радикал. Эта цепная реакция ослабляет клеточную мембрану, нарушает целостность клетки и открывает дорогу многим дегенеративным заболеваниям.
Разрушительное действие избыточных концентраций свободных радикалов проявляется в ускорении процессов старения организма, провоцировании воспалительных процессов в мышечных, соединительных и других тканях, неправильном функционировании циркуляционной системы, нервной системы (включая клетки мозга) и иммунной системы.
Вкратце коснемся физической стороны образования свободных радикалов. Часть электронов внешней орбиты переходит от одного атома к другому. Электроны постоянно стремятся создать на внешней орбите одну или несколько пар, благодаря чему поддерживается химическое равновесие.
Свободные радикалы отличаются крайней неустойчивостью — срок их существования порой не превышает одной миллионной доли секунды. Агрессивное поведение этих химических агентов вызывает целый каскад новообразованных свободных радикалов, каждый из которых, в свою очередь, порождает собственную цепочку свободных радикалов, и так далее, и так далее...
Короче говоря, мы имеем дело с самой настоящей химической бомбой, взрывающейся с появлением первого свободного радикала.
Если биологи и медики наперебой заговорили о свободных радикалах всего несколько лет назад, то физики и химики хорошо знакомы с ними уже более сорока лет. Порожденное радиоактивностью ионизирующее излучение, проникая сквозь материю, вызывает бурное образование свободных радикалов. Схожий процесс происходит и во время крекинга, то есть переработки нефти. Активизируя цепную реакцию, вызванную потоком свободных радикалов, и контролируя ее протекание, ученым удалось создать полимеры и, таким образом, изготовить первые пластмассы.
Свободные радикалы в живом организме
Несмотря на всю убедительность физических опытов, до недавнего времени никто из биологов и не подозревал, что свободные радикалы с равным успехом могут возникать и гибнуть при биохимических процессах в организме человека и животного.
Вот почему когда в 1969 году американские исследователи Маккорд и Фридович заявили, что супероксидный анион, опасный свободный радикал, формируется in vivo, то есть в живом организме, а такой энзим, как супероксидная дисмутаза (эритрокупреин) позволяет его уничтожить, их коллеги в научно-исследовательских институтах всего мира отнеслись к их словам с нескрываемым скептицизмом. Однако фактов накапливалось все больше и больше, исследования в этой области шли полным ходом и, в конце концов, пришлось согласиться с очевидным: свободные радикалы действительно способны возникать в живом организме.
Свободные радикалы и повреждение клетки
Сегодня стало очевидным, что образование свободных радикалов является одним из универсальных патогенетических механизмов при различных типах повреждения клетки, включая следующие:
Эффекты свободных радикалов
Окисление ненасыщенных жирных кислот в составе клеточных мембран является одним из основных эффектов свободных радикалов. Свободные радикалы также повреждают белки (особенно тиол-содержащие) и ДНК. Морфологическим исходом окисления липидов клеточной стенки является формирование полярных каналов проницаемости, что увеличивает пассивную проницаемость мембраны для ионов Са2+, избыток которого депонируется в митохондриях.
Реакции окисления обычно подавляются гидрофобными антиоксидантами, такими как витамин Е и глютатион-пероксидаза.
Подобные витамину Е антиоксиданты, разрывающие цепи окисления, содержатся в свежих овощах и фруктах.
Свободные радикалы также реагируют с молекулами в ионной и водной среде клеточных компартментов.
В ионной среде антиоксидантный потенциал сохраняют молекулы таких веществ, как восстановленный глютатион, аскорбиновая кислота и цистеин. Защитные свойства антиоксидантов становятся очевидны, когда при истощении их запасов в изолированной клетке наблюдают характерные морфологические и функциональные изменения, обусловленные окислением липидов клеточной мембраны.
Типы вызываемых свободными радикалами повреждений определяются не только агрессивностью продуцируемых радикалов, но и структурными и биохимическими характеристиками объекта воздействия. Например, во внеклеточном пространстве свободные радикалы разрушают гликозаминогликаны основного вещества соединительной ткани, что может быть одним из механизмов деструкции суставов (например, при ревматоидном артрите). Свободные радикалы изменяют проницаемость (следовательно, и барьерную функцию) цитоплазматических мембран в связи с формированием каналов повышенной проницаемости, что приводит к нарушению водно-ионного гомеостаза клетки.
Роль биофлавоноидов в предотвращении оксидативного стресса
Путешественники и странники, рацион которых в силу очевидных причин был крайне скуден, часто испытывали различные расстройства, недомогания и болезни. Первые достоверные сведения о негативных явлениях, связанных с недостатком эссенциальных нутриентов, относятся к началу XIII в. и касаются заболеваний среди экипажей кораблей.
Еще большее распространение получил этот так называемый ''морской скорбут'' во второй половине XV столетия, во время кругосветных мореплаваний. Такая эпидемия постигла, например, экипаж Васко де Гама в 1495 г. на пути его в Индию, причем из 160 человек более ста погибло.
Экспедиция знаменитого французского путешественника Жака Картье в 1534 г. была заперта льдами в заливе Святого Лаврентия и провела зимовку на территории провинции Квебек (Канада). Вынужденные питаться преимущественно солониной, многие члены экспедиции заболели цынгой и умерли. К счастью, случайно встреченный индеец раскрыл умирающим секрет приготовления снадобья из коры и иголок одного из вечнозеленых деревьев (Anneda pine tree), растущих в той местности. Картье воспользовался этим советом, что позволило ему практически в течение недели поставить на ноги оставшуюся в живых команду.
Четыре столетия спустя, современные ученые обратили внимание на группу природных веществ, содержащихся в растениях — так называемые флавоноиды. Присутствие флавоноидов в растениях предохраняет их от разрушительного воздействия ультрафиолетовых лучей солнца.
К биофлавоноидам относят флавоноиды, которые обладают биологической активностью по отношению к человеку. Биофлавоноиды обладают способностью связывать свободные радикалы.
Биофлавоноиды были открыты Альбертом Сент-Георги, удостоенным за это Нобелевской Премии. Он предлагал назвать биофлавоноиды ''витамином Р'' (vitamin P), но это название не прижилось, поскольку оказалось, что это не одно вещество, а природная смесь.
Известный исследователь, биохимик, Ричард Пассвотер внес огромный вклад в понимание процессов, происходящих при использовании антиоксидантов. Его пионерная работа о возможности замедления процессов старения появилась в печати в 1971 году, когда термины ''свободный радикал'' и ''антиоксидантная терапия'' были знакомы только очень узкому кругу профессионалов. Спустя два года д-р Пассвотер опубликовал результаты своих онкологических исследований, откуда большинство исследователей впервые узнало о том, что существует связь между свободными радикалами и заболеваниями такого рода.
В 1977 году вышла в свет фундаментальная работа о роли свободных радикалов.
Отмечено, что ни один класс природных веществ не оказывает такого многочисленного и разнообразного воздействия на биологическую активность клеток человека и животных, как биофлавоноиды.
Фармакологическое действие антиоксидантов обусловлено их способностью связывать свободные радикалы (активные биомолекулы, разрушающие генетический аппарат клеток и структуру их мембран) и уменьшать интенсивность окислительных процессов в организме.
Роль антиоксидантов в профилактике различных заболеваний
Сердечно-сосудистые заболевания. Антиоксиданты являются высокоэффективным средством, препятствующим возникновению и прогрессированию атеросклероза, т.к. препятствуют формированию тромбов и атеросклеротических бляшек на стенках сосудов. Антиоксиданты являются лучшим ''чистильщиком'' кровеносных сосудов, их использование позволяет в несколько раз снизить риск заболеваний гипертонией, стенокардией, инфарктом миокарда и инсультом, а также варикозным расширением вен и тромбофлебитами.
Многочисленными исследованиями показано, что главной причиной ишемической болезни сердца (ИБС) является спазм коронарной артерии. По результатам последних исследований большую роль в развитии атеросклероза и ИБС отводят окисленным липопротеидам низкой плотности (ЛПНП), которые могут быть вовлечены в патогенез. Образование окисленных ЛПНП увеличивает способность коронарных сосудов к сокращению и уменьшает их эндотелий-зависимую релаксацию.
Подтверждено, что антиоксиданты повышают устойчивость ЛПНП при добавлении к плазме, кроме того, они имеют антитромбоцитные свойства и ингибируют пролиферацию гладкой мускулатуры сосудов. Ранее было показано, что содержание антиоксидантов в плазме обратно связано с риском стенокардии. В недавних исследованиях убедительно доказана связь содержания антиоксидантов в плазме со спазматической активностью коронарной артерии.
Диабет. Антиоксиданты эффективно уменьшают хрупкость сосудов (в т.ч. и глазных капилляров), это позволяет использовать их для успешной профилактики и лечения диабетической ретинопатии.
Онкологические заболевания. Антиоксиданты обладают способностью резко замедлять рост опухолей и препятствуют их развитию, что позволяет использовать их с целью лечения и профилактики рака и других онкологических заболеваний.
Противовоспалительное действие антиоксидантов обусловлено связыванием гистамина и гистаминоподобных веществ, что позволяет успешно применять данный препарат при артритах, ревматизме, красной волчанке, язвенном коллите, сенной лихорадке, а также для профилактики спортивных травм.
Тонизирующее и восстанавливающее действие на центральную нервную систему. Антиоксиданты улучшают кровоснабжение и обмен веществ в центральной нервной системе, что ускоряет процессы восстановления функций после повреждения центральной нервной системы, улучшает память, зрение, слух.
Стрессопротективное действие антиоксидантов обусловлено тем, что данный препарат препятствует образованию язв и кровоизлияний на стенках желудка и кишечника, вызываемых внешними раздражителями; нормализует функцию нервной, иммунной и эндокринной систем.
Радиопротективное действие антиоксидантов обусловлено их высокой способностью связывать и нейтрализовать повреждающее действие свободных радикалов, образующихся при воздействии ионизирующего облучения. Могут использоваться для профилактики и лечения лучевой болезни.
Косметическое действие. Антиоксиданты обеспечивают эффективную защиту эластина и коллагена (белка соединительной ткани кожного покрова) от разрушительного воздействия свободных радикалов, усиливают переплетение волокон коллагена с цепью эластина. Этим достигается значительное замедление возрастных процессов потери упругости и эластичности кожи, появления морщин и старческих пятен.
Биологическое действие природных антиоксидантов
В результате многочисленных исследований последнего десятилетия сложились представления о том, что единство строения и функции биологических мембран теснейшим образом связано с процессами пероксидного окисления липидов (ПОЛ), составляющих структурную основу бислоя.
Установлено, что многие биосинтетические и деструктивные процессы сопряжены с механизмами окислительных превращений липидов. Не вызывает сомнения, что процессы ПОЛ клеточных мембран представляются наиболее важными с биологической точки зрения. Нарушение регуляции ПОЛ рассматривают в настоящее время в качестве патогенетического маркера целого ряда заболеваний.
С этой позиции изучению биологической роли биоантиоксидантов как факторов, способных регулировать интенсивность пероксидации липидов, уделяется особенно важное внимание.
К числу природных антиоксидантов относят токоферолы, каротиноиды, витамины А, К, убихиноны (УХ) (коэнзим Q), убихроменолы (QC), флавоноиды.
Установлено, что антиоксидантную функцию данные соединения сочетают с достаточно широким спектром биологического действия, не связанного непосредственно с антиокислительной активностью. Конкретные биохимические проявления действия биоантиоксидантов разнообразны и направлены на различные структурные, метаболические и регуляторные системы организма.
Воздействие дефицита антиоксидантов на липидный обмен
Воздействие антиоксидантов проявляется в целом ряде сложных эффектов на всех уровнях организации: от мембранных образований до организма в целом. Показано, что при недостатке в организме антиоксидантов наблюдаются многообразные патологические изменения большого числа органов и тканей животных и человека.
Среди важнейших симптомов антиоксидантной недостаточности отмечаются: нарушения репродуктивной функции, мышечная дистрофия, некрозы печени, повреждения эпителия почечных канальцев и т.д. Отмечаются морфологические изменения, которые характерны для клеток различных тканей и заключаются в значительном увеличении проницаемости или полном разрушении цитоплазматических или внутриклеточных мембран, в том числе митохондрий и микросом.
При этом, морфологическим аномалиям предшествуют изменения жирнокислотного состава липидов, снижение концентрации полиненасыщенных жирных кислот (ПНЖК). Эти нарушения на молекулярном уровне могут быть объяснены повышенным уровнем пероксидного окисления.опубликовано
Источник: www.childneurologyinfo.com/health-text-biochem4.php
Нарушение обмена веществ и энергии, накопление активных повреждающих агентов — так называемых ''свободных радикалов'', инициирующих развитие заболеваний и психо-эмоционального дискомфорта, получило название ''оксидативного стресса''. Хронический стресс приводит к угнетению иммунитета, дискоординации в работе органов и систем, а следовательно, к дисгармонии в организме.
Ограничение возможностей цивилизованного человека общаться с живой природой приводит к тому, что мы живем в искусственном мире и имеем искусственное здоровье, поддерживаемое экологически загрязненными продуктами питания и синтезированными химическим путем лекарственными препаратами, употребление которых неизбежно вызывает развитие побочных эффектов.
Ученые установили, что в организме человека под воздействием перечисленных выше факторов, происходит образование так называемых ''свободных радикалов'', которые ответственны за ускоренное разрушение и деформацию клеток организма.
Что такое свободный радикал?
Свободный радикал образуется в тот момент, когда кислород, участвующий в процессе метаболизма, теряет электрон.
Пытаясь возместить потерю электрона, свободный радикал отбирает электрон, например, у молекулы, входящей в состав клеточной мембраны, превращая ее в новый свободный радикал. Эта цепная реакция ослабляет клеточную мембрану, нарушает целостность клетки и открывает дорогу многим дегенеративным заболеваниям.
Разрушительное действие избыточных концентраций свободных радикалов проявляется в ускорении процессов старения организма, провоцировании воспалительных процессов в мышечных, соединительных и других тканях, неправильном функционировании циркуляционной системы, нервной системы (включая клетки мозга) и иммунной системы.
Вкратце коснемся физической стороны образования свободных радикалов. Часть электронов внешней орбиты переходит от одного атома к другому. Электроны постоянно стремятся создать на внешней орбите одну или несколько пар, благодаря чему поддерживается химическое равновесие.
Свободные радикалы отличаются крайней неустойчивостью — срок их существования порой не превышает одной миллионной доли секунды. Агрессивное поведение этих химических агентов вызывает целый каскад новообразованных свободных радикалов, каждый из которых, в свою очередь, порождает собственную цепочку свободных радикалов, и так далее, и так далее...
Короче говоря, мы имеем дело с самой настоящей химической бомбой, взрывающейся с появлением первого свободного радикала.
Если биологи и медики наперебой заговорили о свободных радикалах всего несколько лет назад, то физики и химики хорошо знакомы с ними уже более сорока лет. Порожденное радиоактивностью ионизирующее излучение, проникая сквозь материю, вызывает бурное образование свободных радикалов. Схожий процесс происходит и во время крекинга, то есть переработки нефти. Активизируя цепную реакцию, вызванную потоком свободных радикалов, и контролируя ее протекание, ученым удалось создать полимеры и, таким образом, изготовить первые пластмассы.
Свободные радикалы в живом организме
Несмотря на всю убедительность физических опытов, до недавнего времени никто из биологов и не подозревал, что свободные радикалы с равным успехом могут возникать и гибнуть при биохимических процессах в организме человека и животного.
Вот почему когда в 1969 году американские исследователи Маккорд и Фридович заявили, что супероксидный анион, опасный свободный радикал, формируется in vivo, то есть в живом организме, а такой энзим, как супероксидная дисмутаза (эритрокупреин) позволяет его уничтожить, их коллеги в научно-исследовательских институтах всего мира отнеслись к их словам с нескрываемым скептицизмом. Однако фактов накапливалось все больше и больше, исследования в этой области шли полным ходом и, в конце концов, пришлось согласиться с очевидным: свободные радикалы действительно способны возникать в живом организме.
Свободные радикалы и повреждение клетки
Сегодня стало очевидным, что образование свободных радикалов является одним из универсальных патогенетических механизмов при различных типах повреждения клетки, включая следующие:
- реперфузия клеток после периода ишемии;
- некоторые медикаментозно-индуцированные формы гемолитической анемии;
- отравление некоторыми гербицидами;
- отравление четыреххлористым углеродом;
- ионизирующее излучение;
- некоторые механизмы старения клетки (например, накопление липидных продуктов в клетке — цероидов и липофусцинов);
- кислородотоксичность;
- атерогенез — вследствие окисления липопротеидов низкой плотности в клетках артериальной стенки.
Cвободные радикалы участвуют в процессах:
- старения;
- канцерогенеза;
- химического и лекарственного поражения клеток;
- воспаления;
- радиоактивного повреждения;
- атерогенеза;
- кислородной и озоновой токсичности.
Эффекты свободных радикалов
Окисление ненасыщенных жирных кислот в составе клеточных мембран является одним из основных эффектов свободных радикалов. Свободные радикалы также повреждают белки (особенно тиол-содержащие) и ДНК. Морфологическим исходом окисления липидов клеточной стенки является формирование полярных каналов проницаемости, что увеличивает пассивную проницаемость мембраны для ионов Са2+, избыток которого депонируется в митохондриях.
Реакции окисления обычно подавляются гидрофобными антиоксидантами, такими как витамин Е и глютатион-пероксидаза.
Подобные витамину Е антиоксиданты, разрывающие цепи окисления, содержатся в свежих овощах и фруктах.
Свободные радикалы также реагируют с молекулами в ионной и водной среде клеточных компартментов.
В ионной среде антиоксидантный потенциал сохраняют молекулы таких веществ, как восстановленный глютатион, аскорбиновая кислота и цистеин. Защитные свойства антиоксидантов становятся очевидны, когда при истощении их запасов в изолированной клетке наблюдают характерные морфологические и функциональные изменения, обусловленные окислением липидов клеточной мембраны.
Типы вызываемых свободными радикалами повреждений определяются не только агрессивностью продуцируемых радикалов, но и структурными и биохимическими характеристиками объекта воздействия. Например, во внеклеточном пространстве свободные радикалы разрушают гликозаминогликаны основного вещества соединительной ткани, что может быть одним из механизмов деструкции суставов (например, при ревматоидном артрите). Свободные радикалы изменяют проницаемость (следовательно, и барьерную функцию) цитоплазматических мембран в связи с формированием каналов повышенной проницаемости, что приводит к нарушению водно-ионного гомеостаза клетки.
Роль биофлавоноидов в предотвращении оксидативного стресса
Путешественники и странники, рацион которых в силу очевидных причин был крайне скуден, часто испытывали различные расстройства, недомогания и болезни. Первые достоверные сведения о негативных явлениях, связанных с недостатком эссенциальных нутриентов, относятся к началу XIII в. и касаются заболеваний среди экипажей кораблей.
Еще большее распространение получил этот так называемый ''морской скорбут'' во второй половине XV столетия, во время кругосветных мореплаваний. Такая эпидемия постигла, например, экипаж Васко де Гама в 1495 г. на пути его в Индию, причем из 160 человек более ста погибло.
Экспедиция знаменитого французского путешественника Жака Картье в 1534 г. была заперта льдами в заливе Святого Лаврентия и провела зимовку на территории провинции Квебек (Канада). Вынужденные питаться преимущественно солониной, многие члены экспедиции заболели цынгой и умерли. К счастью, случайно встреченный индеец раскрыл умирающим секрет приготовления снадобья из коры и иголок одного из вечнозеленых деревьев (Anneda pine tree), растущих в той местности. Картье воспользовался этим советом, что позволило ему практически в течение недели поставить на ноги оставшуюся в живых команду.
Четыре столетия спустя, современные ученые обратили внимание на группу природных веществ, содержащихся в растениях — так называемые флавоноиды. Присутствие флавоноидов в растениях предохраняет их от разрушительного воздействия ультрафиолетовых лучей солнца.
К биофлавоноидам относят флавоноиды, которые обладают биологической активностью по отношению к человеку. Биофлавоноиды обладают способностью связывать свободные радикалы.
Биофлавоноиды были открыты Альбертом Сент-Георги, удостоенным за это Нобелевской Премии. Он предлагал назвать биофлавоноиды ''витамином Р'' (vitamin P), но это название не прижилось, поскольку оказалось, что это не одно вещество, а природная смесь.
Известный исследователь, биохимик, Ричард Пассвотер внес огромный вклад в понимание процессов, происходящих при использовании антиоксидантов. Его пионерная работа о возможности замедления процессов старения появилась в печати в 1971 году, когда термины ''свободный радикал'' и ''антиоксидантная терапия'' были знакомы только очень узкому кругу профессионалов. Спустя два года д-р Пассвотер опубликовал результаты своих онкологических исследований, откуда большинство исследователей впервые узнало о том, что существует связь между свободными радикалами и заболеваниями такого рода.
В 1977 году вышла в свет фундаментальная работа о роли свободных радикалов.
Отмечено, что ни один класс природных веществ не оказывает такого многочисленного и разнообразного воздействия на биологическую активность клеток человека и животных, как биофлавоноиды.
Фармакологическое действие антиоксидантов обусловлено их способностью связывать свободные радикалы (активные биомолекулы, разрушающие генетический аппарат клеток и структуру их мембран) и уменьшать интенсивность окислительных процессов в организме.
Роль антиоксидантов в профилактике различных заболеваний
Сердечно-сосудистые заболевания. Антиоксиданты являются высокоэффективным средством, препятствующим возникновению и прогрессированию атеросклероза, т.к. препятствуют формированию тромбов и атеросклеротических бляшек на стенках сосудов. Антиоксиданты являются лучшим ''чистильщиком'' кровеносных сосудов, их использование позволяет в несколько раз снизить риск заболеваний гипертонией, стенокардией, инфарктом миокарда и инсультом, а также варикозным расширением вен и тромбофлебитами.
Многочисленными исследованиями показано, что главной причиной ишемической болезни сердца (ИБС) является спазм коронарной артерии. По результатам последних исследований большую роль в развитии атеросклероза и ИБС отводят окисленным липопротеидам низкой плотности (ЛПНП), которые могут быть вовлечены в патогенез. Образование окисленных ЛПНП увеличивает способность коронарных сосудов к сокращению и уменьшает их эндотелий-зависимую релаксацию.
Подтверждено, что антиоксиданты повышают устойчивость ЛПНП при добавлении к плазме, кроме того, они имеют антитромбоцитные свойства и ингибируют пролиферацию гладкой мускулатуры сосудов. Ранее было показано, что содержание антиоксидантов в плазме обратно связано с риском стенокардии. В недавних исследованиях убедительно доказана связь содержания антиоксидантов в плазме со спазматической активностью коронарной артерии.
Диабет. Антиоксиданты эффективно уменьшают хрупкость сосудов (в т.ч. и глазных капилляров), это позволяет использовать их для успешной профилактики и лечения диабетической ретинопатии.
Онкологические заболевания. Антиоксиданты обладают способностью резко замедлять рост опухолей и препятствуют их развитию, что позволяет использовать их с целью лечения и профилактики рака и других онкологических заболеваний.
Противовоспалительное действие антиоксидантов обусловлено связыванием гистамина и гистаминоподобных веществ, что позволяет успешно применять данный препарат при артритах, ревматизме, красной волчанке, язвенном коллите, сенной лихорадке, а также для профилактики спортивных травм.
Тонизирующее и восстанавливающее действие на центральную нервную систему. Антиоксиданты улучшают кровоснабжение и обмен веществ в центральной нервной системе, что ускоряет процессы восстановления функций после повреждения центральной нервной системы, улучшает память, зрение, слух.
Стрессопротективное действие антиоксидантов обусловлено тем, что данный препарат препятствует образованию язв и кровоизлияний на стенках желудка и кишечника, вызываемых внешними раздражителями; нормализует функцию нервной, иммунной и эндокринной систем.
Радиопротективное действие антиоксидантов обусловлено их высокой способностью связывать и нейтрализовать повреждающее действие свободных радикалов, образующихся при воздействии ионизирующего облучения. Могут использоваться для профилактики и лечения лучевой болезни.
Косметическое действие. Антиоксиданты обеспечивают эффективную защиту эластина и коллагена (белка соединительной ткани кожного покрова) от разрушительного воздействия свободных радикалов, усиливают переплетение волокон коллагена с цепью эластина. Этим достигается значительное замедление возрастных процессов потери упругости и эластичности кожи, появления морщин и старческих пятен.
Биологическое действие природных антиоксидантов
В результате многочисленных исследований последнего десятилетия сложились представления о том, что единство строения и функции биологических мембран теснейшим образом связано с процессами пероксидного окисления липидов (ПОЛ), составляющих структурную основу бислоя.
Установлено, что многие биосинтетические и деструктивные процессы сопряжены с механизмами окислительных превращений липидов. Не вызывает сомнения, что процессы ПОЛ клеточных мембран представляются наиболее важными с биологической точки зрения. Нарушение регуляции ПОЛ рассматривают в настоящее время в качестве патогенетического маркера целого ряда заболеваний.
С этой позиции изучению биологической роли биоантиоксидантов как факторов, способных регулировать интенсивность пероксидации липидов, уделяется особенно важное внимание.
К числу природных антиоксидантов относят токоферолы, каротиноиды, витамины А, К, убихиноны (УХ) (коэнзим Q), убихроменолы (QC), флавоноиды.
Установлено, что антиоксидантную функцию данные соединения сочетают с достаточно широким спектром биологического действия, не связанного непосредственно с антиокислительной активностью. Конкретные биохимические проявления действия биоантиоксидантов разнообразны и направлены на различные структурные, метаболические и регуляторные системы организма.
Воздействие дефицита антиоксидантов на липидный обмен
Воздействие антиоксидантов проявляется в целом ряде сложных эффектов на всех уровнях организации: от мембранных образований до организма в целом. Показано, что при недостатке в организме антиоксидантов наблюдаются многообразные патологические изменения большого числа органов и тканей животных и человека.
Глобальный миф о прогестероне — читать всем женщинам!
Упражнения долголетия: 3 ключевые точки тела
Среди важнейших симптомов антиоксидантной недостаточности отмечаются: нарушения репродуктивной функции, мышечная дистрофия, некрозы печени, повреждения эпителия почечных канальцев и т.д. Отмечаются морфологические изменения, которые характерны для клеток различных тканей и заключаются в значительном увеличении проницаемости или полном разрушении цитоплазматических или внутриклеточных мембран, в том числе митохондрий и микросом.
При этом, морфологическим аномалиям предшествуют изменения жирнокислотного состава липидов, снижение концентрации полиненасыщенных жирных кислот (ПНЖК). Эти нарушения на молекулярном уровне могут быть объяснены повышенным уровнем пероксидного окисления.опубликовано
Источник: www.childneurologyinfo.com/health-text-biochem4.php