Просто о сложном: почему все вокруг стремится к хаосу и как это остановить Страница 2 из 4



Но… Как вообще измерить хаос? В физике для измерения хаоса используют величину, которая называется энтропией системы. Чем больше энтропия, тем менее упорядочена система. В состоянии равновесия энтропия максимальна. Больцманом в XIX веке была доказана так называемая H-теорема, которая гласит, что в замкнутой системе энтропия со временем всегда возрастает.





На практике это несет за собой вполне понятные последствия. Если мы, например, возьмем шарик с гелием и взорвем его в углу комнаты, то газ через некоторое время разлетится по всей комнате, заполнив равномерно ее всю. Таким образом, энтропия газа увеличится до максимума и… Да, в общем-то, и все. Сколько бы мы ни ждали, гелий никогда не соберется обратно в кучу в углу комнаты. То есть процессы в нашем мире необратимы: из конечного состояния мы никак не можем узнать начальное, так как конечное состояние одинаково для всех начальных состояний. Это вполне понятно, наш опыт вполне этому соответствует. Всегда легче что-то сломать, чем построить, легче разбросать, чем собрать воедино. Это все вполне логично, так?

Не совсем. Представьте, что у вас есть замкнутая комната с кучей шариков, которые летят и врезаются друг в друга. Все абсолютно идеально, столкновения упругие, никаких потерь энергии. Через достаточное количество времени распределение скоростей будет в точности максвелловским, энтропия необратимо возрастет до максимума.

Данные телескопа Planck показали, что примерно 98% энергии нашей Вселенной не заключено в звездах и вообще в обычном веществе, из которого состоим мы
Но давайте взглянем на каждый шарик по отдельности. Дело в том, что для каждого шарика мы можем узнать в точности его скорость и координату, а также действующую на него силу. Из второго закона Ньютона можем узнать ускорение — и все: движение каждой отдельной частички можно совершенно однозначно задать. Закон Ньютона по времени обратим, так как, если повернуть время вспять, свою форму закон не изменит. Это означает, что и движение каждого отдельного шарика тоже обратимо: из конечного состояния шарика можно понять, откуда он пришел и как двигался, но… Но движение всех шариков вместе оказывается необратимым.





То есть в основе нашего необратимого мира лежат вполне себе обратимые законы. Это весьма странно. А что, если никакой необратимости нет, а это всего лишь иллюзия? Что, если движение просто настолько сложное, что оно кажется нам хаотичным, а на самом деле оно вполне регулярно?

Для примера того, что имеется в виду, возьмем очень интересную систему. Она называется клеточный автомат. Представьте, что ваша Вселенная — это простой ряд из белых и черных клеточек. Вы — бог этой Вселенной, и вам нужно заложить какое-то правило эволюции по времени. И вы закладываете очень простое правило: если сама клетка черная и соседние две клетки тоже черные, то в следующем шаге клетка будет белой (на картинке снизу слева), если клетка черная, сосед слева тоже черный, а сосед справа белый, то в следующем шаге клетка станет черной и так далее. Таким образом можно задать универсальное правило (физику) вашей Вселенной. Записать этот закон можно с помощью нулей и единичек или, если перевести их в десятиричную запись, с помощью просто одного числа. В данном случае (на картинке) это будет правило 90. Эволюция такого клеточного автомата показана ниже.


  • 159
  • 20/09/2016


Поделись



Подпишись



Смотрите также