Парадоксы можно найти где угодно Страница 1 из 3

Парадоксы можно найти где угодно, начиная от экологии, заканчивая геометрией. Даже у того устройства, которое вы используете для чтения этой статьи, существуют свои парадоксы. Представляем вам 10 объяснений некоторых малоизвестных (но от этого не менее интересных) парадоксов. Некоторые понятия настолько противоречат здравому смыслу, что придется постараться, чтобы их попросту осознать.

Парадокс Пето




Очевидно, что киты больше нас по размеру. Это также значит, что их тела состоят из большего количества клеток. Каждая клетка живого организма подвержена риску стать раковой. Таким образом, киты более склонны заболеть раком, чем люди, не так ли.

На самом деле это не так. Парадокс Пето, названный в честь профессора Оксфордского университета Ричарда Пето, утверждает, что связи между размером животного и риском заболевания раком не существует. И люди, и киты имеют примерно равные шансы заболеть раком, в то же время у мышей эти шансы гораздо выше, хоть они гораздо меньше людей, а тем более китов.

Некоторые биологи считают, что парадокс Пето – следствие сопротивляемость организма инфекции. Также эта функция связана с предотвращением клеточной мутации.
Парадокс Бэнака-Тарского

Представьте, что вы держите шар. А теперь представьте, что вы разрываете его на кусочки, причем каждый кусочек получается такой формы, какую вы захотите. После этого соедините все эти кусочки и сделайте из них не один, а два шара. Насколько эти два шара отличаются от размеров первоначального?

Теоритическая геометрия будет утверждать, что шар может быть разделен на два других шара, по форме и размеру таких же, как и первоначальный. Более того, взять два шара разного объема, каждый из них можно изменить и подстроить под размер другого. Т.е. теоритически говоря, можно изменить горох до размера солнца.

Фишка этого парадокса в том, что в условии задания сказано, что вы можете разорвать этот шар на любое количество кусочков любой формы, но в действительности же это невозможно: во-первых, вы ограничены структурой материала, во-вторых, размером атомов. Чтобы условие выполнилось, необходимо, чтобы шар состоял из неограниченного числа нульмерных частиц. При этом мяч будет очень большой плотности, и при этом каждая из этих частиц не будет иметь определенного объема. При таких условиях вы сможете из этих частиц создать шар любого размера. Новые шары также будет состоять из бесконечного числа частиц, при этом они будут достаточно высокой плотности.

Хотя это не пройдет с шаром в виде обычного спортивного мяча, для математической сферы это работает. Решение этого парадокса, известное как теорема Банака-Тарского, очень важно для теоретической математики.

Проблема существования вещей


Чтобы что-то физически существовало, оно должно присутствовать на протяжении какого-то времени. Также как у предмета не может не быть длины, ширины или глубины, у него и не может отсутствовать длительность существования. Если предмет не существует во времени, он не существует физически.

Согласно нигилизму, нет ни прошлого, ни будущего, потому что они не занимают места в настоящем. Более того, невозможно ограничить то время, которое мы называем настоящим. Все то время, которое мы считаем настоящим, можно разделить на прошлое, настоящее и будущее. Даже если настоящее длится всего секунду, эту секунду можно разделить на три части: прошлое, настоящее и будущее. Также и эту третью часть секунды тоже можно разделить на три части, и так далее до бесконечности.

Поэтому настоящего не существует, потому что оно не может существовать во времени. Нигилисты используют это в качестве аргумента, что ничто не существует.

Парадокс Моравека
  • 738
  • 10/04/2014


Поделись



Подпишись



Смотрите также

Новое