+4353.45
Рейтинг
11803.11
Сила
yellowdragon
Небожитель
Это приложение показывает, как девушки выглядят без макияжа
10 звезд, чьи предки оказались куда более известными
12 поз йоги для двоих, которые научат доверять друг другу
10 культовых символов, значение которых мы понимали неправильно
10 примеров, как можно скорректировать силуэт одеждой
12 героев экранизаций, которые заметно отличаются от книжной версии
Ученые разработали дезинфицирующую бумагу
Ученые Ратгерского университета (США) изобрели недорогой и эффективный способ уничтожения бактерий и дезинфекции поверхностей с помощью устройства на основе бумаги.
«Бумага — древний материал, обладающий уникальными свойствами, погодными для использования в новейших технологиях, — говорит Аарон Маццео, один из исследователей. — Мы обнаружили, что, применив к стопке металлизированной бумаги высокое напряжение, мы можем создать плазму, то есть сочетание тепла, ультрафиолетового излучения и озона, которое убивает микробы».
Подобная бумажная дезинфекция может применяться в легкой промышленности, для создания одежды, лабораторного оборудования и медицинских повязок, которые сами себя стерилизуют. С их помощью можно сдерживать распространение вспышек эпидемии масштаба эболы в Западной Африке.
Изобретение состоит из бумаги с тонким слоем алюминия и шестиугольными узорами, которые служат для производства плазмы или ионизированного газа. Пористая и волокнистая природа бумаги позволяет газу проходить сквозь нее, наполнять плазмой и обеспечивать охлаждение.
В ходе эксперимента дезинфекция убила более 99% грибков Saccharomyces cerevisiae (пекарские дрожжи) и 99,9% бактерий кишечной палочки. Предварительные результаты показали, что умирают даже споры бактерий, которые обычно трудно уничтожить обычными методами стерилизации.
«Насколько нам известно, мы первые, кто использует бумагу в качестве основы для производства плазмы», — говорит Цзинцзинь Се, ведущий автор исследования.
Бумага может быть не только средством уничтожения бактерий, но и удобным носителем бактериальных батарей. Ученые Университета штата Нью-Йорк нашли, как заставить микробы вырабатывать электричество, достаточное для питания биосенсоров. Бумажная батарея может работать в сточной воде или выделениях организма. опубликовано
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©
Источник: //hightech.fm/2017/05/02/antibacterial-paper
«Бумага — древний материал, обладающий уникальными свойствами, погодными для использования в новейших технологиях, — говорит Аарон Маццео, один из исследователей. — Мы обнаружили, что, применив к стопке металлизированной бумаги высокое напряжение, мы можем создать плазму, то есть сочетание тепла, ультрафиолетового излучения и озона, которое убивает микробы».
Подобная бумажная дезинфекция может применяться в легкой промышленности, для создания одежды, лабораторного оборудования и медицинских повязок, которые сами себя стерилизуют. С их помощью можно сдерживать распространение вспышек эпидемии масштаба эболы в Западной Африке.
Изобретение состоит из бумаги с тонким слоем алюминия и шестиугольными узорами, которые служат для производства плазмы или ионизированного газа. Пористая и волокнистая природа бумаги позволяет газу проходить сквозь нее, наполнять плазмой и обеспечивать охлаждение.
В ходе эксперимента дезинфекция убила более 99% грибков Saccharomyces cerevisiae (пекарские дрожжи) и 99,9% бактерий кишечной палочки. Предварительные результаты показали, что умирают даже споры бактерий, которые обычно трудно уничтожить обычными методами стерилизации.
«Насколько нам известно, мы первые, кто использует бумагу в качестве основы для производства плазмы», — говорит Цзинцзинь Се, ведущий автор исследования.
Бумага может быть не только средством уничтожения бактерий, но и удобным носителем бактериальных батарей. Ученые Университета штата Нью-Йорк нашли, как заставить микробы вырабатывать электричество, достаточное для питания биосенсоров. Бумажная батарея может работать в сточной воде или выделениях организма. опубликовано
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©
Источник: //hightech.fm/2017/05/02/antibacterial-paper
Взгляд изнутри: а так ли хороши Filament–лампы
Сегодня мы поговорим об одной животрепещущей и крайне популярной в последнее время теме, а именно filament (или, по–русски, нитевидных) светодиодных лампах. Мы провели подробный анализ ламп разных производителей, включая измерение температуры светодиодных нитей. И под катом мы постараемся ответить на вопрос: а так ли хороши filament лампы, как их малюют нам представляют маркетологи?
Лет 5 назад светодиодное освещение начало активно завоёвывать своих приспешников и адептов. Инженеры долго пытались приспособить двумерные от природы источники света для трёхмерного освещения (чего только стоят лампы в виде кукурузных початков ).
И вот на рынок были выпущены filament–лампы. Казалось бы, что найдено пусть не идеальное, но оптимальное решение проблемы, когда и «овцы сыты и волки целы»: лампочка практически ничем не отличается от лампочки Ильича как форме, так и по содержанию, только нить вольфрамовая заменена на нить светодиодную. Даже старым стеклодувным заводам и мастерским нашлась работа. Сейчас предлагается использовать керамическую полупрозрачную подложку для улучшения радиального распределения светового потока ламп (например, Crystal Ceramic MCOB ).
Что же это за загадочный filament? Кратко об устройстве нити
Нить (filament) представляет собой пирог, состоящий из нескольких компонент. Тонкая стеклянная (не так хорошо проводит тепло) или сапфировая/керамическая (хорошо проводит тепло) подложка – зависит от жадности производителя – с двумя контактами по краям. На эту подложку устанавливаются светодиодные чипы, которые соединяются последовательно тончайшей золотой нитью. Затем вся конструкция заливается люминофором и, вуаля, filament готов.
Схема устройства светодиодной нити
Идея, заложенная в данный тип светодиодов, проста: попытка выжать ещё чуть–чуть лм/Вт, ведь в такой конструкции не важно, куда излучает светодиод, в отличие от SMD. Свет всё равно, достигнет люминофора и даст тёплую компоненту (зелёный и красный цвета).
Однако, несмотря на неоспоримые преимущества перед SMD светодиодами, у filament ламп существует ряд проблем, которые почему–то не хотят замечать. Например, в «стандартной» компоновке с SMD–диодами, довольно массивная алюминиевая подложка и корпус эффективно отводят тепло, тогда как в нитях единственный способ отвода тепла – фактически лишь конвекция и диссипация через стенки стеклянной колбы. То есть, банальный перегрев постепенно убивает как сами диоды (падение яркости с температурой), так и люминофор (страдают индекс цветопередачи CRI или R a и цветовая температура CCT). Да, такой метод «перегрева» работает для вольфрамовой лампы, потому что газ в ней частичной способствует регенерации нити в процессе использования, но не более того. Как следует из представленной статьи относительно безвредным можно считать температуры порядка 60–70 градусов.
В двух словах для рядового потребителя перегрев или недостаточный теплоотвод от светодиодов означает только одно – кратное (иногда на порядки) ухудшение характеристик светодиодных ламп.
Чтобы данную точку зрения подтвердить или опровергнуть, надо запастись лампами, взять обычные светодиодные лампы для сравнения и поэкспериментировать… в том числе и с измерением температуры, в чём нам поможет тепловизор компании Flir 5–ой серии с матрицей в 240 на 320 пикселей. С помощью данной камеры была измерена температура как на колбе в течение получаса, так и на самих светодиодах после удаления колбы.
По традиции выводы для спешащих представлены в двух итоговых таблицах в самом конце статьи. А любителей основательных разборок милости просим в часть экспериментальную.
Разбор лампочки выявил одну интересную особенность конструкции – а именно драйвер. Точнее его полное отсутствие: лампочка питается через банальный диодный мост MB10F с парой резисторов и огромным твердотельным конденсатором. Зато компактно!
Светодиоды расположены на матовой подложке в количестве 18 штук. Каждый светодиодные чип выполнены из сапфировой текстурированной подложке типа «звёздочка». Чипы совершенно небольших размеров – меньше человеческого волоса.
Почему производителю выгодно делать ультра–маленькие светодиоды?
Интересный вопрос. Одна и причина чисто экономическая. Маленькие светодиодные чипы просто не требуют дополнительных золотых контактов для равномерного распределения электрического поля и, соответственно, равномерной светимости по всему диоду.
Другая причина – теплоотвод. Не имеет смысла ставить мощный большой светодиод на подложку, которая относительно плохо проводит тепло.
А что там с температурой? — спросит читатель. Да, температура на колбе за 5–7 минут достигает примерно 40 градусов и остаётся таковой в течение получаса.
Но давайте теперь заглянем под колбу нашей лампе. После удаления стекла и замера температуры выяснилось, что нити очень быстро (буквально за 1 минуту) нагреваются до почти 90 градусов, а в некоторых местах, по–видимому, там, где расположены светодиоды, температура достигает более 100 градусов.
Следующая лампа от компании Eglo, у которой, между прочим, есть представительство и в РФ, в общем и целом порадовала своими характеристиками. Пульсаций на частоте 100 Гц составили около 6%, при этом цветовая температура и CRI вполне соответствуют заявленным характеристикам.
Внутри лампы находятся также четыре нити светодиодов, как и в китайской лампе. Внутри спрятан драйвер на базе конденсаторного балласта. Светодиоды несколько больше – 113 на 57 микрон, чем в предыдущем случае. Однако они крайне плохо закреплены на опять–таки матовой подложке.
Что же касается температуры, то лампочка быстро (за те же 5–7 минут) разогревается до температуры порядка 50 градусов. И нити вновь демонстрируют температуру ~90 градусов. Прям, как проклятие конструкции лампы «накаливания» какое–то!
Последняя протестированная лампочка производства компании Phillips. Удивительно, но эта лампочка в корпусе Е14 демонстрирует отличное соответствие заявленным характеристикам и крайне низки уровень пульсаций.
Чем это обусловлено, ведь цоколь E14 гораздо меньше E27? – зададитесь Вы вопросом. Всё гениальное просто: у Phillips хорошие, очень хорошие инженеры, которые способные создать ультра–компактный драйвер (обратноходовый преобразователь) так, чтобы он уместился в патрон E14, при этом драйвер обеспечивает крайне низкий уровень пульсаций (<1%).
В самой лампе всего две светодиодные нити, так как она потребляет всего 2.3 Вт. Светодиодные чипы размещены на прозрачной подложке и аналогичны по размерам тем, что используются в лампах Eglo, но с иной текстурой подложки – «щит». Как уже отмечалось выше против законов теплофизики не попрёшь.
Примерно за 10 минут колба лампы прогревается до ~45 градусов (две нити медленнее «прогревают» всю лампу). Однако температура нитей без стеклянной колбы составила всё же 95 градусов, местами – повторимся, скорее всего, в месте крепления светодиодных чипов к подложке – достигая значений в 110–120 градусов.
Чтобы не быть голословным при вынесении вердикта относительно filament–ламп, мы добавим несколько фотографий уже знакомых ламп IKEA и мощных умных ламп Prestigio. Корпус лампы IKEA прогревается до 75 градусов в течение полчаса, а умной лампы Prestigio до 58. При этом SMD светодиоды ламп Prestigio, к примеру, на максимальной мощности нагреваются лишь до указанной в самом начале статьи «безопасной» температуры 60–70 градусов.
Давайте теперь подведём некоторые итоги и постараемся ответить на вопрос: стоит ли игра свеч filament’ов?
1. По традиции, полученные данные тестирования сведены в таблицу ниже. Но, на мой взгляд, не стоит доверять заявленному световому потоку китайской лампы, так и остальные характеристики не внушают доверия. У производителей ширпотреба есть привычка завышать результаты. В остальном лампы Eglo и Phillips соответствуют заявленному на упаковке, а Китай — Вы сами всё прекрасно понимаете…
Пожалуйста, сэкономьте своё здоровье и время – запрашивайте результаты тестирования, прежде чем покупать LED–лампы на Ebay, да и в обычных магазинах тоже скоро придётся ввести данную меру!
2. Сравнение спектров не выявило сколь либо значимых отличий: во всех лампам, скорее всего, используется один и тот же люминофор, который и даёт тёплый ламповый filament–свет. Есть небольшие вариации компоненты синего цвета, что прослеживается в значении цветовой температуры выше: у Eglo самая тёплая, Phillips посерединке, у CroLED «самая холодная».
3. Если говорить о какой–то технологичности, то лишь Phillips имеет право называться хорошей и безопасной лампой с нормальным драйвером, в очередной раз подтверждая статус ведущего игрока на рынке.
Все протестированные лампы имеют удивительно однотипные значения удельного светового потока и удельной мощности. Эти значения сопоставимы со средними показателями SMD–ламп. Видимо, теплопередача и нагрев светодиодов существенно ограничивают эти характеристики в сравнении с обычной компоновкой на основе SMD сборок светодиодов.
4. И самое вкусное припасено на десерт. Измерения температуры самих нитей с помощью ИК–камеры (тепловизора) — надеемся — убедительно показывают и доказывают, что filament технология не может являться полноценной заменой обычных SMD ламп с алюминиевым радиатором и гораздо более эффективным теплоотводом. Плюс добавим существенно органиченное пространство для драйвера и в результате мы получим, что яркие и мощные светильники с продолжительным сроком службы на основе filament создать будет проблематично (уже 12 Вт лампы зачастую снабжены радиатором).
Отчитываюсь: Из установленных ламп IKEA, Gauss и умных лампочек Presigio, только LED–лампы IKEA заметно гудят. Причём все: что E27, что E14 и разные по мощности. Gauss практически не шумит, равно как и Prestigio (не забываем, всё же в современных устройствах стоит эффективное шумоподавление).
Источник: //geektimes.ru/company/prestigio/blog/271198/
Предыстория вопроса
Когда речь заходит о новой технологии, то сразу встаёт один из важнейших вопросов: а как эта технология вливается в общую технологическую «эко–среду»? Обычно революционные технологии просто не вписываются в привычный ход вещей, и приходится прилагать огромные усилия для внедрения революционных продуктов. К примеру, так было с возобновляемыми источниками энергии, устанавливаемых на частных домах, когда стоимость «комплекта» просела на порядки, а в некоторых местах нашей планеты людям ещё и доплачивают за выработку электроэнергии, что потребовало пересмотра отношений между производителями и потребителями электричества. Совершенно аналогичная история приключилась с электрокарами, когда индустрия разделилась и пошла двумя путями: гибриды и полноценные электромашины с отдельными «заправочными» станциями.Лет 5 назад светодиодное освещение начало активно завоёвывать своих приспешников и адептов. Инженеры долго пытались приспособить двумерные от природы источники света для трёхмерного освещения (чего только стоят лампы в виде кукурузных початков ).
И вот на рынок были выпущены filament–лампы. Казалось бы, что найдено пусть не идеальное, но оптимальное решение проблемы, когда и «овцы сыты и волки целы»: лампочка практически ничем не отличается от лампочки Ильича как форме, так и по содержанию, только нить вольфрамовая заменена на нить светодиодную. Даже старым стеклодувным заводам и мастерским нашлась работа. Сейчас предлагается использовать керамическую полупрозрачную подложку для улучшения радиального распределения светового потока ламп (например, Crystal Ceramic MCOB ).
Что же это за загадочный filament? Кратко об устройстве нити
Нить (filament) представляет собой пирог, состоящий из нескольких компонент. Тонкая стеклянная (не так хорошо проводит тепло) или сапфировая/керамическая (хорошо проводит тепло) подложка – зависит от жадности производителя – с двумя контактами по краям. На эту подложку устанавливаются светодиодные чипы, которые соединяются последовательно тончайшей золотой нитью. Затем вся конструкция заливается люминофором и, вуаля, filament готов.
Схема устройства светодиодной нити
Идея, заложенная в данный тип светодиодов, проста: попытка выжать ещё чуть–чуть лм/Вт, ведь в такой конструкции не важно, куда излучает светодиод, в отличие от SMD. Свет всё равно, достигнет люминофора и даст тёплую компоненту (зелёный и красный цвета).
Однако, несмотря на неоспоримые преимущества перед SMD светодиодами, у filament ламп существует ряд проблем, которые почему–то не хотят замечать. Например, в «стандартной» компоновке с SMD–диодами, довольно массивная алюминиевая подложка и корпус эффективно отводят тепло, тогда как в нитях единственный способ отвода тепла – фактически лишь конвекция и диссипация через стенки стеклянной колбы. То есть, банальный перегрев постепенно убивает как сами диоды (падение яркости с температурой), так и люминофор (страдают индекс цветопередачи CRI или R a и цветовая температура CCT). Да, такой метод «перегрева» работает для вольфрамовой лампы, потому что газ в ней частичной способствует регенерации нити в процессе использования, но не более того. Как следует из представленной статьи относительно безвредным можно считать температуры порядка 60–70 градусов.
В двух словах для рядового потребителя перегрев или недостаточный теплоотвод от светодиодов означает только одно – кратное (иногда на порядки) ухудшение характеристик светодиодных ламп.
Чтобы данную точку зрения подтвердить или опровергнуть, надо запастись лампами, взять обычные светодиодные лампы для сравнения и поэкспериментировать… в том числе и с измерением температуры, в чём нам поможет тепловизор компании Flir 5–ой серии с матрицей в 240 на 320 пикселей. С помощью данной камеры была измерена температура как на колбе в течение получаса, так и на самих светодиодах после удаления колбы.
По традиции выводы для спешащих представлены в двух итоговых таблицах в самом конце статьи. А любителей основательных разборок милости просим в часть экспериментальную.
Часть экспериментальная
Итак, для экспериментов были взяты три лампы разных производителей: дешёвая китайская лампочка с Ebay от компании CroLED (на самом деле по цене эквивалентен Eglo), другая лампа фирмы Eglo из местного Леруа Мерлен и многоуважаемый и широкоизвестный Phillips. Да, стоит отметить, что возможно лампочка с Ebay НЕ имеет никакого отношения к фирме CroLED.CroLED: китайское качество Ebay
Начнём с filament–лампы из Поднебесной. Лампочка прибыла из Китая в простой картонной коробке с минимум информации на ней (температура, мощность и напряжение питания. Честно признаться, ожидания были сами разные, но реальность оказалась намного суровее. Коэффициент пульсаций составил 67%. А, мне кажется, что это рекорд! Фактически лампочка гасла и разгоралась снова с периодичностью 10 мс. Цветовая температура отличалась в меньшую сторону от того, что указано в магазине продавца на Ebay.Разбор лампочки выявил одну интересную особенность конструкции – а именно драйвер. Точнее его полное отсутствие: лампочка питается через банальный диодный мост MB10F с парой резисторов и огромным твердотельным конденсатором. Зато компактно!
Светодиоды расположены на матовой подложке в количестве 18 штук. Каждый светодиодные чип выполнены из сапфировой текстурированной подложке типа «звёздочка». Чипы совершенно небольших размеров – меньше человеческого волоса.
Почему производителю выгодно делать ультра–маленькие светодиоды?
Интересный вопрос. Одна и причина чисто экономическая. Маленькие светодиодные чипы просто не требуют дополнительных золотых контактов для равномерного распределения электрического поля и, соответственно, равномерной светимости по всему диоду.
Другая причина – теплоотвод. Не имеет смысла ставить мощный большой светодиод на подложку, которая относительно плохо проводит тепло.
А что там с температурой? — спросит читатель. Да, температура на колбе за 5–7 минут достигает примерно 40 градусов и остаётся таковой в течение получаса.
Но давайте теперь заглянем под колбу нашей лампе. После удаления стекла и замера температуры выяснилось, что нити очень быстро (буквально за 1 минуту) нагреваются до почти 90 градусов, а в некоторых местах, по–видимому, там, где расположены светодиоды, температура достигает более 100 градусов.
Eglo: обычная ламп с обычными характеристиками
Следующая лампа от компании Eglo, у которой, между прочим, есть представительство и в РФ, в общем и целом порадовала своими характеристиками. Пульсаций на частоте 100 Гц составили около 6%, при этом цветовая температура и CRI вполне соответствуют заявленным характеристикам.
Внутри лампы находятся также четыре нити светодиодов, как и в китайской лампе. Внутри спрятан драйвер на базе конденсаторного балласта. Светодиоды несколько больше – 113 на 57 микрон, чем в предыдущем случае. Однако они крайне плохо закреплены на опять–таки матовой подложке.
Что же касается температуры, то лампочка быстро (за те же 5–7 минут) разогревается до температуры порядка 50 градусов. И нити вновь демонстрируют температуру ~90 градусов. Прям, как проклятие конструкции лампы «накаливания» какое–то!
Phillips: качество превыше всего
Последняя протестированная лампочка производства компании Phillips. Удивительно, но эта лампочка в корпусе Е14 демонстрирует отличное соответствие заявленным характеристикам и крайне низки уровень пульсаций.
Чем это обусловлено, ведь цоколь E14 гораздо меньше E27? – зададитесь Вы вопросом. Всё гениальное просто: у Phillips хорошие, очень хорошие инженеры, которые способные создать ультра–компактный драйвер (обратноходовый преобразователь) так, чтобы он уместился в патрон E14, при этом драйвер обеспечивает крайне низкий уровень пульсаций (<1%).
В самой лампе всего две светодиодные нити, так как она потребляет всего 2.3 Вт. Светодиодные чипы размещены на прозрачной подложке и аналогичны по размерам тем, что используются в лампах Eglo, но с иной текстурой подложки – «щит». Как уже отмечалось выше против законов теплофизики не попрёшь.
Примерно за 10 минут колба лампы прогревается до ~45 градусов (две нити медленнее «прогревают» всю лампу). Однако температура нитей без стеклянной колбы составила всё же 95 градусов, местами – повторимся, скорее всего, в месте крепления светодиодных чипов к подложке – достигая значений в 110–120 градусов.
Чтобы не быть голословным при вынесении вердикта относительно filament–ламп, мы добавим несколько фотографий уже знакомых ламп IKEA и мощных умных ламп Prestigio. Корпус лампы IKEA прогревается до 75 градусов в течение полчаса, а умной лампы Prestigio до 58. При этом SMD светодиоды ламп Prestigio, к примеру, на максимальной мощности нагреваются лишь до указанной в самом начале статьи «безопасной» температуры 60–70 градусов.
Выводы
Давайте теперь подведём некоторые итоги и постараемся ответить на вопрос: стоит ли игра свеч filament’ов?
1. По традиции, полученные данные тестирования сведены в таблицу ниже. Но, на мой взгляд, не стоит доверять заявленному световому потоку китайской лампы, так и остальные характеристики не внушают доверия. У производителей ширпотреба есть привычка завышать результаты. В остальном лампы Eglo и Phillips соответствуют заявленному на упаковке, а Китай — Вы сами всё прекрасно понимаете…
Пожалуйста, сэкономьте своё здоровье и время – запрашивайте результаты тестирования, прежде чем покупать LED–лампы на Ebay, да и в обычных магазинах тоже скоро придётся ввести данную меру!
2. Сравнение спектров не выявило сколь либо значимых отличий: во всех лампам, скорее всего, используется один и тот же люминофор, который и даёт тёплый ламповый filament–свет. Есть небольшие вариации компоненты синего цвета, что прослеживается в значении цветовой температуры выше: у Eglo самая тёплая, Phillips посерединке, у CroLED «самая холодная».
3. Если говорить о какой–то технологичности, то лишь Phillips имеет право называться хорошей и безопасной лампой с нормальным драйвером, в очередной раз подтверждая статус ведущего игрока на рынке.
Все протестированные лампы имеют удивительно однотипные значения удельного светового потока и удельной мощности. Эти значения сопоставимы со средними показателями SMD–ламп. Видимо, теплопередача и нагрев светодиодов существенно ограничивают эти характеристики в сравнении с обычной компоновкой на основе SMD сборок светодиодов.
4. И самое вкусное припасено на десерт. Измерения температуры самих нитей с помощью ИК–камеры (тепловизора) — надеемся — убедительно показывают и доказывают, что filament технология не может являться полноценной заменой обычных SMD ламп с алюминиевым радиатором и гораздо более эффективным теплоотводом. Плюс добавим существенно органиченное пространство для драйвера и в результате мы получим, что яркие и мощные светильники с продолжительным сроком службы на основе filament создать будет проблематично (уже 12 Вт лампы зачастую снабжены радиатором).
Отчитываюсь: Из установленных ламп IKEA, Gauss и умных лампочек Presigio, только LED–лампы IKEA заметно гудят. Причём все: что E27, что E14 и разные по мощности. Gauss практически не шумит, равно как и Prestigio (не забываем, всё же в современных устройствах стоит эффективное шумоподавление).
Источник: //geektimes.ru/company/prestigio/blog/271198/
Электрический кэб
Лондонская Taxi Company на своём новом предприятии в Ковентри собирается исследовать различные инновационные транспортные технологии с ультранизкими выбросами, а также выпускать последнюю версию своих прославленных машин – в формате электромобиля. Размер инвестиций составит 300 млн. фунтов. Для этого будет построено экоустойчивое здание площадью 37000 кв. метров, включающее как производственное помещение, так и лабораторный центр. Годовая программа выпуска составит более 20 000 автомобилей в год.
Ожидается, что у нового здания будет оценка «отлично» по рейтинг BREEAM и показатели энергоэффективности не ниже «А». Здесь будет 850 кв. метров солнечных батарей и 20 станций зарядки электромобилей. Здание снабдят системой рекуперации тепла, а дождевая вода будет собираться для использования во всех туалетах объекта.
Интересно, что это будет первая автомобильная фабрика, построенная в Великобритании за последние 15 лет. опубликовано
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©
Источник: //green-city.su/elektro-keb/
Ожидается, что у нового здания будет оценка «отлично» по рейтинг BREEAM и показатели энергоэффективности не ниже «А». Здесь будет 850 кв. метров солнечных батарей и 20 станций зарядки электромобилей. Здание снабдят системой рекуперации тепла, а дождевая вода будет собираться для использования во всех туалетах объекта.
Интересно, что это будет первая автомобильная фабрика, построенная в Великобритании за последние 15 лет. опубликовано
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©
Источник: //green-city.su/elektro-keb/