Пять детских головоломок, которые вводят в ступор взрослых Страница 1 из 2

В это трудно поверить, но на решение этих задач у маленьких детей уходит всего по 5–10 минут, а взрослые тратят на них часы, а нередко и вообще не могут с ними справиться! Догадайтесь, в чём секрет?

Сайт публикует пять известных задач, которые поразительно легко даются детям.

Номер парковочного места

Задачка для гонконгских школьников, которая набрала «вирусную» популярность в середине 2014 года. На её решение у шестилетнего ребёнка обычно уходит не больше 20 секунд, а вот неподготовленных взрослых она часто вводит в ступор.

Какое число скрыто под машиной?







Решение: как часто бывает в подобных случаях, проблема взрослых заключается в том, что они идут слишком сложным путём — например, пытаются высчитать закономерность, согласно которой расположены номера парковочных мест. В действительности же картинку надо просто мысленно перевернуть.

Другая математика





Известная задача, которую дошкольники решают за 5–10 минут. У некоторых программистов уходит на неё до часа, а многие люди, исписав несколько листов бумаги, сдаются.

Решение: маленькие дети не могут составлять уравнения или искать математические закономерности, поэтому они замечают, что значение зависит от количества кружочков в каждой цифре. В 9 один кружочек, в 8 — два, в 1 — ни одного, а, значит, 2581=2.

У этой задачи есть хороший аналог:

1 = 5
2 = 25
3 = 125
4 = 625
5 = ?

Ханна и резко повышенная сложность

Знаменитая задачка-мем, в которой итоговый вопрос кажется куда более сложным, чем условие.

В сумке n конфет. Шесть из них оранжевые. Остальные — жёлтые. Ханна берёт конфету из сумки и съедает. Затем берёт ещё одну и снова съедает. Вероятность того, что она съела две оранжевые конфеты — 1/3. Докажите, что n²-n-90=0.

Странное завершение истории Ханны породило в сети множество шуток. Самая известная: «Ханна съела несколько конфет. Рассчитайте длину окружности экватора Юпитера с помощью кальки и ржавой ложки».

Решение: многие пользователи сети никак не могут найти решение, потому что убеждены, что для него нужно сначала вычислить n, однако в действительности этого не требуется.

Вероятность того, что в первый раз Ханна вытянула оранжевую конфету — 6/n (в сумке шесть оранжевых из n конфет). Если в первый раз Ханна вытянула оранжевую конфету, то вероятность вытянуть такую же во второй раз — 5/(n-1). Вероятность вытянуть две оранжевые конфеты — произведение этих двух вероятностей.

Получаем: (6/n)⋅(5/(n-1))=¹⁄₃. Дальше достаточно упростить уравнение.

Куда едет автобус



  • 609
  • 05/11/2015


Поделись



Подпишись



Смотрите также

Новое