ВИЭ и побочные экологические эффекты Страница 1 из 3

Эта статья является продолжением темы развития энергетики на основе возобновляемых источников энергии (ВИЭ). Речь идёт о вкладе энергетики на возобновляемых источниках в эмиссию парниковых газов и, в целом, побочных экологических эффектах развития энергетики на основе ВИЭ. В ряде случаев отрицательные последствия возобновляемой энергетики для среды и общества могут быть велики — вопреки заявленным целям об улучшении экологических показателей, и каждый проект требует отдельного тщательного анализа. В целом, положительные и отрицательные экологические эффекты энергетики на ВИЭ — вопрос, ещё требующий дополнительных комплексных исследований.

 







Климатический аспект развития возобновляемой энергетики связан с «нулевой эмиссией CO2» при работе солнечных, ветряных, гидравлических и других энергетических станций на возобновляемых ресурсах. Действительно, в данных случаях выработка энергии идёт без сжигания углеводородного сырья и, как следствие, без выделения парниковых газов и других загрязнителей в атмосферу.

Однако ситуация сложнее, если рассматривать весь жизненный цикл производства, начиная с подготовительных стадий и включая побочные эффекты в процессе выработки энергии.

Для получения энергии необходимы изготовление и установка энергетического оборудования, создание инфраструктуры и обеспечение условий для его работы, подготовка сырья, утилизация отработанного материала и оборудования по истечении срока службы. Это требует работы металлургических, машиностроительных, сельскохозяйственных и других предприятий, использования энергии из ископаемых источников, и означает уже ненулевую эмиссию.

Учёт воздействий на окружающую среду на всех стадиях показывает, что переход к возобновляемой энергетике не всегда ведёт к снижению загрязнения среды, в том числе к снижению эмиссии CO2 и других парниковых газов.

Исследования побочных эффектов (в том числе экологических) возобновляемой энергетики в комплексе имеют сравнительно недавнюю историю, а в последнее время об этом заговорили активнее. Одна из недавних заметных работ — труд норвежского исследователя, научного сотрудника и руководителя проектов Западно-норвежского исследовательского института (Western Norway Research Institute, WNRI) Отто Андерсена (Otto Andersen) «Непреднамеренные последствия возобновляемой энергетики. Проблемы, требующие решения». Работа Андерсена использует ранее собранную разными исследователями информацию по отдельным видам энергии и регионам, на основе которых выстраивается обобщённая картина экологических рисков возобновляемой энергетики.

Ключевые понятия и подходы связаны с анализом жизненного цикла (Life Cycle Analysis, LCA) и оценкой так называемых «встречных эффектов», «эффектов отскока» или «обратных эффектов» — rebound effects, что в отечественной литературе переводят как «восстановительные эффекты» или, без перевода, «ребаунд-эффекты».

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергетических культур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей.

Ряд вопросов остаётся открытым, исследования побочных эффектов в возобновляемой энергетике пока нельзя назвать достаточно хорошо изученной темой, хотя в предыдущие годы по данной тематике был проведён ряд локальных исследований и экспериментов.

Возобновляемая энергетика и эмиссия парниковых газов

Если говорить об эмиссии парниковых газов, то разные виды возобновляемой энергетики, по выражению Андерсена, вовсе не являются «равнозелёными» (equally green), если рассматривать их с позиций полного жизненного цикла. Основной показатель, с точки зрения эмиссии парниковых газов, связанной с производством энергии, используемый в том числе Андерсоном, — это количество грамм-эквивалента СО2 на единицу произведённой энергии, в частности, для электроэнергетики принимается 1 кВт·ч, то есть гСО2экв/кВт·ч.

В данном случае важна методика расчёта и исходные допущения — прежде всего, для какого интервала времени идёт расчёт, а также загрузка производственных мощностей (коэффициент использования установленной мощности, то есть КИУМ) и, соответственно, ожидаемая выработка энергии за определённый промежуток времени. Картина здесь та же, что и с расчётом выровненных затрат (Levelized Costs, LC) на производство единицы энергии. Чаще всего используется 20-летний интервал.

Анализ жизненного цикла даёт следующие показатели эмиссии для разных типов производства электрической энергии [гСО2экв/кВт·ч]: ветряная — 12; приливная — 15; гидравлическая — 20; океаническая волновая — 22; геотермальная — 35; солнечные (фотовольтаические) батареи — 40; солнечные концентраторы — 10; биоэнергетика — 230.

Это, однако, в любом случае на порядок меньше величин, приводимых для энергетики, работающей на ископаемом сырье: угольная — 820; газовая — 490. В то же время, самой «экологически безопасной», в данном смысле, является атомная энергетика, где показатель эмиссии гСО2экв/кВт·ч составляет всего 12, то есть этот параметр равен самым низким показателям энергетики на возобновляемых источниках. Очевидно, что распределение эмиссии парниковых газов по стадиям жизненного цикла производства для разных типов энергетики кардинально различается (рис. 1, табл. 1).

В случае с ветряной, солнечной, геотермальной и гидроэнергетикой основная экологическая нагрузка приходится на стадию производства материалов, оборудования и строительства станций. Сходная структура и у атомной энергетики. У энергетики, работающей на ископаемом топливе, основная часть эмиссии приходится на период работы станции, для которой необходимо сжигание топлива. То же верно и для биоэнергетики. Таким образом, здесь мы тоже можем провести аналогию со структурой затрат — в первом случае «экологические затраты» относятся, скорее, к категории постоянных, во втором — к категории переменных. В первом случае преимущества сильнее проявляются на более длительных интервалах времени. Во втором случае сократить разрыв в «углеродно-эмиссионной ёмкости производства» можно за счёт технологий, позволяющих сокращать расход топлива и систем улавливания парниковых газов. В данном случае, при сравнении «эмиссионной ёмкости» ветряных и угольных электростанций допускается временной интервал 20 лет и КИУМ ветростанций составляет 30-40 %.







Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергокультур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей

Следует учитывать, что выше приведены грубые усреднённые (медианные) значения, здесь не может быть большой точности. Очень много зависит от технологии и конкретных условий производства. Данные различных исследований и разных источников могут кардинально расходиться. В частности, для ветроэнергетики разброс может составлять от 2 до 80 гСО2экв/кВт·ч (onlinelibrary.wiley.com).

Для ГЭС показатель гСО2экв/кВт·ч может достигать 180. А «нижние» значения для электростанций на ископаемом топливе — 200-300 гСО2экв/кВт·ч.

Причины, по которым эмиссия парниковых газов может достигать высоких значений для жизненных циклов гидроэлектростанций, солнечных, биоэнергетических и геотермальных станций, различны. В случае с ГЭС это, прежде всего, формирование водохранилища при плотине, в котором может формироваться застойный режим с микро био логическим разложением органического материала в приплотинной зоне, что вызывает рост эмиссии СО2 и СН4 (метана). Сходные процессы возможны и в зонах приливных электростанций. В солнечной фотовольтаической энергетике основные проблемы связаны с процессом производства солнечных батарей, ведь среди прочих рисков для среды и здоровья он приводит к эмиссии ряда соединений фтора — гексафторэтана C2F6, трёхфтористого азота NF3, гексафторида серы SF6, являющихся мощными парниковыми газами. В случае с геотермальной энергетикой многое зависит от состава энергоносителя — термальной воды, отличающейся высокой температурой и минерализацией со сложным химическим составом. В процессе её использования и утилизации возможно как непосредственное тепловое загрязнение среды, так и выделение в почву, воду и атмосферу ряда химических соединений, включая парниковые газы.

Эмиссия парниковых газов при использовании биоэнергии происходит на всех стадиях. Прежде всего, она происходит на стадии выращивания энергетических культур, в частности, рапса и масличной пальмы. Интенсивная культивация рапса требует большого количества азотных удобрений, что ведёт к росту эмиссии мощного парникового газа — двуокиси азота N20, являющейся, кроме того, разрушителем озонового слоя.



  • 408
  • 18/01/2017


Поделись



Подпишись



Смотрите также

Новое