Генетические везунчики: на примере мышечных волокон и людей

Во время тренировки мы не часто задумываемся о том, какие сложные процессы протекают во всем организме. О пользе регулярной физической активности говорят уже давно, и каждый год ученые со всего мира пытаются пролить свет на новые «полезные» механизмы влияния тренировок на здоровье. Как следствие особого внимания к активному образу жизни, мы – ученые, получили ценную информацию о том, каким образом протекают разные процессы и чем именно достигается их ювелирная координация в организме человека.

В данной статье мы постараемся перевести эти интересные факты с профессионального языка исследователей на научно-популярный и рассказать просто о сложном.

В этот раз хочется начать с рассказа про мышечные волокна, почему в физиологии их условно разделили на несколько типов, и в чем разница между силовыми и аэробными занятиями.



Мышечные волокна – это то, из чего состоит отдельно взятая мышца, допустим, бицепс. Этот мускул, как и все остальные, содержит два основных типа мышечных волокон – быстрые (или «белые») и медленные (или «красные») . 

Миоглоби́н – белок, который связывает кислород в клетках скелетных мышц и мышцы сердца и таким образом обеспечивает их энергией для сокращения.0

Красные волокна, которые расположены ближе всего к кости, получили свое название из-за высокой концентрации особых клеточных органелл – митохондрий(«энергетических станций») и большого запаса пигментного белка красного цвета  миоглобина(«переносчиков кислорода»).



Белые (быстрые) волокна Красные (медленные) волокна Источник «топлива» — гликоген (углевод). Резерв «топлива» – подкожная жировая ткань [1]. Сокращаются только в присутствии кислорода. Задача быстрых волокон – обеспечить мощные кратковременные сокращения с помощью резкого повышения активности ферментов, расщепляющих гликоген. Имеют большую силу ивозможность значительного роста. Преимущество белых волокон в виде гипертрофии способно помочь в развитии силовых возможностейчеловека. Красные мышечные волокна при высокой производительности не способны к значительной гипертрофии, то есть их объем почти не увеличивается из-за особенностей их метаболизма. Отвечают за поддержание позы, осанки, позволяют длительно бежать или сделать 100 повторений «на пресс», но они не растут. При интенсивных силовых тренировках возможно частичное превращение медленных волокон в промежуточные, которые обладают свойствами как медленных, так и быстрых волокон, давая прирост мышечной массе. Запасы красных волокон «застрахованы» организмом, и даже малоподвижный образ жизни способен поддерживать эти резервы на уровне, достаточном для перемещения тела в пространстве. Продвигаясь к наружной поверхности мышцы, можно увидеть белые волокна, которые называются так из-за того, что действительно имеют менее выраженный цвет, чем красные. В них мало митохондрий, нет миоглобина, и для работы им необходимо запустить целый каскад биохимических реакций. 

Как уже стало понятно, белые волокна – это рельеф, объем и скоростно-силовые характеристики. Для того чтобы 40 раз отжаться или работать на пределе возможностей, включаются в работу быстрые волокна.

Исходя из знаний про мышечную ткань, важно понимать, что, тренируя выносливость во время аэробных занятий, мы в основном задействуемкрасные волокна, которые будут «сжигать жир» и повысят уровень обмена веществ. Силовые же тренировки позволяют поддерживать мышцы в тонусе и формируют привычный мышечный рельеф стройного тела, задействуя белые волокна.

Теперь, когда сложилось общее представление о волокнах, самое время узнать более интересные научные факты о мышечной ткани.

Все знают популярную, но устаревшую с научной точки зрения, фразу о том, что нервные клетки не восстанавливаются, но эта «необратимость» относится и к мышечной ткани в равной степени.

Дело в том, что после рождения у нас не происходит численного увеличения мышечных клеток обоих типов волокон, а после 35-40 лет каждый год мы безвозвратно теряем 1% сухой мышечной массы за счет уменьшения их объема. Замедлить этот процесс помогает активный образ жизни и регулярные силовые упражнения на тренировку основных мышечных групп .

Некоторые люди, даже не утруждая себя тренировками, имеют достаточную мышечную массу, а другие, напротив, быстро теряют форму при малоактивном образе жизни. Объяснение этой разнице дает генетика, а именно гены ACTN3 и MSTN. Альфа-актинин 3, кодируемый геном ACTN3 белок, который словно якорь сцепляет актиновые волокна в мышце и находится только в белых мышечных волокнах, повышая их сократимость и силу .

Актин – сократительный белок, который составляет около 15% мышечного белка. Соединяясь с другими белками, волокна актина приобретают способность сокращаться, используя энергию, содержащуюся в АТФ.

КОПИИ ГЕНОВ ACTN3

У относительно небольшого числа людей этот ген представлен двумя «рабочими» копиями, которые достались им от каждого из родителей. Такая особенность предрасполагает к высокому содержанию ACTN3 в мышцах, и, соответственно, высокой силе, мышечному рельефу, а также позволяет добиться особых успехов в тех видах спорта, где требуется взрывная сила или ускорение (например, баскетбол, спринтерский бег и тяжелая атлетика).  Обратная ситуация наблюдается примерно у 18% европейской популяции, когда от родителей достались две «нерабочие« копии гена ACTN3. При таком раскладе в белых волокнах практически нет альфа-актинина 3, такие люди в основном имеют красные мышечные волокна и преуспевают в тренировках на выносливость. Наиболее часто встречается ситуация, когда от одного из родителей достался «рабочий» вариант гена, а от другого – «нерабочий», при этом мы с помощью тренировок можем компенсировать вклад «нерабочего» гена и развить скоростно-силовые качества. В спортивной генетике исследование гена ACNT3 позволяет выявить спортсменов, которые могут преуспеть в силовых дисциплинах, или в тех видах спорта, где требуется высокий уровень выносливости. Также выявление изменений гена ACTN3 позволяет косвенно оценить соотношение белых и красных мышечных волокон. 

В противовес эффектам гена ACTN3 выступает ген MSTN, который кодирует белокмиостатин. Задача миостатина – предотвратить избыточный рост мышечной ткани, что важно для здоровья сердца.

КОЛИЧЕСТВО ГЕНОВ MSTN

Бывают ситуации, когда у человека выявляется вариант гена MSTN, обладающий большей активностью, что означает повышенное содержание миостатина и, соответственно, более стремительное противостояние организма мышечному росту. Такие люди часто астенического телосложения, и им очень тяжело нарастить мышечную массу, даже сочетая оптимальное питание с тренировками. Реже встречаются люди, обладающие двумя «нерабочими« вариантами гена MSTN. Миостатина у них крайне мало, ничто не препятствует росту мышечной ткани, что приводит к гипертрофии мышц даже без дополнительных тренировок. Часто они выглядят как культуристы, так как жировая прослойка у таких людей выражена не ярко и дает проявиться мышечному рельефу. Бывает и промежуточный вариант, когда от одного из родителей человеку досталась неактивная копия гена MSTN. Соответственно, миостатина в крови содержится меньше за счет синтеза белка с единственной рабочей копии гена. Такой человек без труда наращивает мышечную массу и обладает высокой силой. Сегодня я осветила эти два гена неспроста, ведь они оба ответственны за подержание мышечной массы.

Только небольшая часть людей действительно предрасположена к гармоничному телу и выдающимся возможностям «от природы», и чаще всего они становятся профессиональными спортсменами. Однако большая часть людей все-таки не имеет таких явных преимуществ в достижении стройного, рельефного тела или развитии силы и выносливости, поэтому регулярные тренировки как интервальные, так и силовые, помогают «перевесить» генетику и приводят к заметным результатам. При этом крайне важно поддерживать имеющиеся мышцы в тонусе, защищая их от неизбежной атрофии с возрастом и малоподвижным образом жизни. опубликовано 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: sektascience.com/articles/training-process/geneticheskie-vezunchiki/


Комментарии