630
0,2
2015-07-06
150 млн градусов ради чистой энергии
Давайте немного отвлечёмся от политики и поговорим о грядущей революции в энергетике.
Международный экспериментальный термоядерный реактор ITER без преувеличения можно назвать самым значительным исследовательским проектом современности. По масштабам строительства он легко заткнет за пояс Большой адронный коллайдер, а в случае успеха ознаменует для всего человечества гораздо больший шаг, чем полет на Луну. Ведь в потенциале управляемый термоядерный синтез — это практически неиссякаемый источник небывало дешевой и чистой энергии.
Этим летом нашлось сразу несколько веских причин освежить в памяти технические подробности проекта ITER. Во-первых, грандиозное начинание, официальным стартом которого считается встреча Михаила Горбачева и Рональда Рейгана в далеком 1985 году, на наших глазах принимает материальное воплощение. Проектирование реактора нового поколения при участии России, США, Японии, Китая, Индии, Южной Кореи и Евросоюза заняло более 20 лет. Сегодня ITER — это уже не килограммы технической документации, а 42 га (1 км на 420 м) идеально ровной поверхности одной из крупнейших в мире рукотворных платформ, расположенной во французском городе Кадараш, в 60 км севернее Марселя. А также фундамент будущего 360 000-тонного реактора, состоящий из 150 000 кубометров бетона, 16 000 т арматуры и 493 колонн с резинометаллическим антисейсмическим покрытием. И, конечно же, тысячи сложнейших научных инструментов и исследовательских установок, разбросанных по университетам всего мира.
Производство ключевых компонентов реактора идет полным ходом. Весной Франция отрапортовала об изготовлении 70 каркасов для D-образных катушек тороидального поля, а в июне началась намотка первых катушек из сверхпроводящих кабелей, поступивших из России от Института кабельной промышленности в Подольске.
Вторая веская причина вспомнить об ITER именно сейчас — политическая. Реактор нового поколения — испытание не только для ученых, но и для дипломатов. Это настолько дорогостоящий и технически сложный проект, что ни одной стране мира не потянуть его в одиночку. От способности государств договариваться между собой как в научной, так и в финансовой сфере зависит, удастся ли довести дело до конца.
На 18 июня был запланирован Совет ITER в Санкт-Петербурге, однако Государственный департамент США в рамках санкций запретил американским ученым посещать Россию. Принимая во внимание тот факт, что сама идея токамака (тороидальной камеры с магнитными катушками, лежащей в основе ITER) принадлежит советскому физику Олегу Лаврентьеву, участники проекта отнеслись к данному решению как к курьезу и попросту перенесли совет в Кадараш на ту же дату. Эти события лишний раз напомнили всему миру о том, что Россия (наряду с Южной Кореей) наиболее ответственно относится к исполнению своих обязательств перед проектом ITER.
Словосочетание «термоядерный реактор» у многих людей вызывает настороженность. Ассоциативная цепочка понятна: термоядерная бомба страшнее просто ядерной, а значит, термоядерный реактор опаснее Чернобыля.
На самом деле ядерный синтез, на котором основывается принцип работы токамака, намного безопаснее и эффективнее ядерного деления, применяемого в современных АЭС. Синтез используется самой природой: Солнце представляет собой не что иное, как естественный термоядерный реактор.
В реакции задействованы ядра дейтерия и трития — изотопов водорода. Ядро дейтерия состоит из протона и нейтрона, а ядро трития — из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра отталкиваются друг от друга, однако при очень высоких температурах они могут сталкиваться. При соударении в игру вступает сильное взаимодействие, которое отвечает за объединение протонов и нейтронов в ядра. Возникает ядро нового химического элемента — гелия.
При этом образуется один свободный нейтрон и выделяется большое количество энергии. Энергия сильного взаимодействия в ядре гелия меньше, чем в ядрах исходных элементов. За счет этого результирующее ядро даже теряет в массе (согласно теории относительности энергия и масса эквивалентны). Вспомнив знаменитое уравнение E = mc2, где c — это скорость света, можно представить себе, какой колоссальный энергетический потенциал таит в себе ядерный синтез.
Чтобы преодолеть силу взаимного отталкивания, исходные ядра должны двигаться очень быстро, поэтому ключевую роль в ядерном синтезе играет температура. В центре Солнца процесс протекает при температуре 150 млн градусов Кельвина, но ему способствует колоссальная плотность вещества, обусловленная действием гравитации. Колоссальная масса светила делает его эффективным термоядерным реактором.
Создать такую плотность на Земле не представляется возможным. Нам остается лишь наращивать температуру. Чтобы изотопы водорода отдали землянам энергию своих ядер, необходима температура 150 млн градусов, то есть в десять раз выше, чем на Солнце.
Ни один твердый материал во Вселенной не может напрямую контактировать с такой температурой. Так что просто построить печку для приготовления гелия не получится. Решить проблему помогает та самая тороидальная камера с магнитными катушками, или токамак. Идея создания токамака осенила светлые головы ученых из разных стран в начале 1950-х, при этом первенство однозначно приписывается советскому физику Олегу Лаврентьеву и его именитым коллегам Андрею Сахарову и Игорю Тамму.
Вакуумная камера в форме тора (пустотелого «бублика») окружается сверхпроводящими электромагнитами, которые создают в ней тороидальное магнитное поле. Именно это поле удерживает раскаленную до десяти солнц плазму на некотором расстоянии от стенок камеры. Вместе с центральным электромагнитом (индуктором) токамак представляет собой трансформатор. Изменяя ток в индукторе, порождают течение тока в плазме — движение частиц, необходимое для синтеза.
Токамак можно по праву считать образцом технологического изящества. Электрический ток, протекающий в плазме, создает полоидальное магнитное поле, опоясывающее плазменный шнур и поддерживающее его форму. Плазма существует при строго определенных условиях, и при их малейшем изменении реакция немедленно прекращается. В отличие от реактора АЭС, токамак не может «пойти вразнос» и неконтролируемо наращивать температуру.
В маловероятном случае разрушения токамака не происходит радиоактивного заражения. В отличие от АЭС, термоядерный реактор не производит радиоактивных отходов, а единственный продукт реакции синтеза — гелий — не является парниковым газом и полезен в хозяйстве. Наконец, токамак очень бережно расходует топливо: во время синтеза в вакуумной камере находится всего несколько сотен граммов вещества, а расчетный годовой запас горючего для промышленной электростанции составляет всего 250 кг.
Международный экспериментальный термоядерный реактор ITER без преувеличения можно назвать самым значительным исследовательским проектом современности. По масштабам строительства он легко заткнет за пояс Большой адронный коллайдер, а в случае успеха ознаменует для всего человечества гораздо больший шаг, чем полет на Луну. Ведь в потенциале управляемый термоядерный синтез — это практически неиссякаемый источник небывало дешевой и чистой энергии.
Этим летом нашлось сразу несколько веских причин освежить в памяти технические подробности проекта ITER. Во-первых, грандиозное начинание, официальным стартом которого считается встреча Михаила Горбачева и Рональда Рейгана в далеком 1985 году, на наших глазах принимает материальное воплощение. Проектирование реактора нового поколения при участии России, США, Японии, Китая, Индии, Южной Кореи и Евросоюза заняло более 20 лет. Сегодня ITER — это уже не килограммы технической документации, а 42 га (1 км на 420 м) идеально ровной поверхности одной из крупнейших в мире рукотворных платформ, расположенной во французском городе Кадараш, в 60 км севернее Марселя. А также фундамент будущего 360 000-тонного реактора, состоящий из 150 000 кубометров бетона, 16 000 т арматуры и 493 колонн с резинометаллическим антисейсмическим покрытием. И, конечно же, тысячи сложнейших научных инструментов и исследовательских установок, разбросанных по университетам всего мира.
Производство ключевых компонентов реактора идет полным ходом. Весной Франция отрапортовала об изготовлении 70 каркасов для D-образных катушек тороидального поля, а в июне началась намотка первых катушек из сверхпроводящих кабелей, поступивших из России от Института кабельной промышленности в Подольске.
Вторая веская причина вспомнить об ITER именно сейчас — политическая. Реактор нового поколения — испытание не только для ученых, но и для дипломатов. Это настолько дорогостоящий и технически сложный проект, что ни одной стране мира не потянуть его в одиночку. От способности государств договариваться между собой как в научной, так и в финансовой сфере зависит, удастся ли довести дело до конца.
На 18 июня был запланирован Совет ITER в Санкт-Петербурге, однако Государственный департамент США в рамках санкций запретил американским ученым посещать Россию. Принимая во внимание тот факт, что сама идея токамака (тороидальной камеры с магнитными катушками, лежащей в основе ITER) принадлежит советскому физику Олегу Лаврентьеву, участники проекта отнеслись к данному решению как к курьезу и попросту перенесли совет в Кадараш на ту же дату. Эти события лишний раз напомнили всему миру о том, что Россия (наряду с Южной Кореей) наиболее ответственно относится к исполнению своих обязательств перед проектом ITER.
Словосочетание «термоядерный реактор» у многих людей вызывает настороженность. Ассоциативная цепочка понятна: термоядерная бомба страшнее просто ядерной, а значит, термоядерный реактор опаснее Чернобыля.
На самом деле ядерный синтез, на котором основывается принцип работы токамака, намного безопаснее и эффективнее ядерного деления, применяемого в современных АЭС. Синтез используется самой природой: Солнце представляет собой не что иное, как естественный термоядерный реактор.
В реакции задействованы ядра дейтерия и трития — изотопов водорода. Ядро дейтерия состоит из протона и нейтрона, а ядро трития — из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра отталкиваются друг от друга, однако при очень высоких температурах они могут сталкиваться. При соударении в игру вступает сильное взаимодействие, которое отвечает за объединение протонов и нейтронов в ядра. Возникает ядро нового химического элемента — гелия.
При этом образуется один свободный нейтрон и выделяется большое количество энергии. Энергия сильного взаимодействия в ядре гелия меньше, чем в ядрах исходных элементов. За счет этого результирующее ядро даже теряет в массе (согласно теории относительности энергия и масса эквивалентны). Вспомнив знаменитое уравнение E = mc2, где c — это скорость света, можно представить себе, какой колоссальный энергетический потенциал таит в себе ядерный синтез.
Чтобы преодолеть силу взаимного отталкивания, исходные ядра должны двигаться очень быстро, поэтому ключевую роль в ядерном синтезе играет температура. В центре Солнца процесс протекает при температуре 150 млн градусов Кельвина, но ему способствует колоссальная плотность вещества, обусловленная действием гравитации. Колоссальная масса светила делает его эффективным термоядерным реактором.
Создать такую плотность на Земле не представляется возможным. Нам остается лишь наращивать температуру. Чтобы изотопы водорода отдали землянам энергию своих ядер, необходима температура 150 млн градусов, то есть в десять раз выше, чем на Солнце.
Ни один твердый материал во Вселенной не может напрямую контактировать с такой температурой. Так что просто построить печку для приготовления гелия не получится. Решить проблему помогает та самая тороидальная камера с магнитными катушками, или токамак. Идея создания токамака осенила светлые головы ученых из разных стран в начале 1950-х, при этом первенство однозначно приписывается советскому физику Олегу Лаврентьеву и его именитым коллегам Андрею Сахарову и Игорю Тамму.
Вакуумная камера в форме тора (пустотелого «бублика») окружается сверхпроводящими электромагнитами, которые создают в ней тороидальное магнитное поле. Именно это поле удерживает раскаленную до десяти солнц плазму на некотором расстоянии от стенок камеры. Вместе с центральным электромагнитом (индуктором) токамак представляет собой трансформатор. Изменяя ток в индукторе, порождают течение тока в плазме — движение частиц, необходимое для синтеза.
Токамак можно по праву считать образцом технологического изящества. Электрический ток, протекающий в плазме, создает полоидальное магнитное поле, опоясывающее плазменный шнур и поддерживающее его форму. Плазма существует при строго определенных условиях, и при их малейшем изменении реакция немедленно прекращается. В отличие от реактора АЭС, токамак не может «пойти вразнос» и неконтролируемо наращивать температуру.
В маловероятном случае разрушения токамака не происходит радиоактивного заражения. В отличие от АЭС, термоядерный реактор не производит радиоактивных отходов, а единственный продукт реакции синтеза — гелий — не является парниковым газом и полезен в хозяйстве. Наконец, токамак очень бережно расходует топливо: во время синтеза в вакуумной камере находится всего несколько сотен граммов вещества, а расчетный годовой запас горючего для промышленной электростанции составляет всего 250 кг.