Всё пучком Страница 1 из 3





Этим постом я продолжаю тему использования явления взрывной электронной эмиссии, о которой я недавно рассказывал в своей статье "В сердце катодного пятна". На очереди интересная технология и оборудование по генерации сильноточных низкоэнергетических электронных пучков (НСЭП) в протяженном плазменном канале. Эта технология позволят получать поверхностные сплавы, обладающие рядом уникальных характеристик. О практических применениях данной технологии, перспективах её развития и необычных сферах использования мы поговорим в этой статье.



Как это работает?
Для генерации электронного пучка необходимо использовать вакуумную камеру, в которой установлены катоды отражательного разряда (K1, K2) и плазменный анод (A). Расстояние между катодами 20-50 см. Процесс происходит в магнитном поле. Для возникновения плазмы в разрядном промежутке должен быть инертный газ при низком давлении. Можно использовать различные газы, но чаще используется недорогой аргон.





Давления не велики — тысячные доли миллиметра ртутного столба для обеспечения максимальной "идеальности" газа. При этом длина свободного пробега молекул газа как минимум на порядок больше размера разрядной ячейки и составляет порядка десятка метров.
Теперь чтобы зажечь отражательный разряд, необходимо заземлить катоды K1, K2 и от импульсного источника питания (ИП) подать импульс положительного напряжения на анод. Также не забудем включить магнитное поле. Схема теперь будет выглядеть примерно так, как показано на рисунке.





Предположим, что между катодом К1 и анодом А возник свободный электрон. Движению электрона к аноду мешает сильное магнитное поле, которое как-бы закручивает его в разрядной ячейке. Электрон начинает осциллировать между катодами, вызывая ионизацию молекул газа. Возникают дополнительные электроны, которые в свою очередь подхватывают и усиливают процесс ионизации, который начинает быть лавинным. Пространство между катодами заполняется плазмой, на их поверхностях возникают катодные пятна и разряд переходит в сильноточную (дуговую) стадию.
Такой разряд называется отражательным, так как возникает он из-за многократного отражения электронов от катодов К1 и К2 как в пинг-понге. Физика отражательного разряда хорошо изучена. Иногда такой разряд называют разрядом Пенинга.

Генерация пучка
Итак, мы научились стабильно создавать плазменный столб внутри вакуумной камеры. Разряд будет существовать до тех пор, пока подано питающее напряжение. Но это уже не так интересно. Попытаемся сгенерировать мощный электронный пучок. Для этого разрядим предварительно заряженный до 30-50 кВ конденсатор на один из катодов разрядной ячейки.





От мощного источника постоянного напряжения заряжаем высоковольтный конденсатор. Цепь зарядки обеспечивает катушка индуктивности. Это очень важный элемент схемы! Катушка индуктивности обеспечивает всю работу схемы. На постоянном токе в момент зарядки конденсатора её сопротивление мало (36 Ом), а в момент разрядки конденсатора возникает мощный импульс длительностью всего несколько микросекунд. Сопротивление катушки резко увеличивается и вся энергия, запасенная в конденсаторе, направляется на катод K1. Запуск схемы осуществляется срабатыванием разрядника S, который поджигается коротким управляющий импульсом отрицательной полярности в 4 кВ. Энергия от конденсатора передается по согласованной линии связи TL, которая выполнена из шести параллельных отрезков кабеля РК-50-9 определенной длины, чтобы четко согласовать нагрузку. Все узлы сильноточной электроники серьёзные. К примеру, конденсатор весит более 100 кг.

Что происходит в момент подачи высокого напряжения? На катоде возникает область повышенного отрицательного заряда, которая примыкает к границе плазмы отражательного разряда. Возникает, так называемый, двойной слой. Эта область является ускоряющей для электронов, которые интенсивно эмитируются с катодных пятен.


  • 736
  • 05/06/2015


Поделись



Подпишись



Смотрите также

Новое