628
0,2
2015-07-05
Что такое кванты
На нынешнем ликбезе мы вынесем мозг рядовому гуманитарию темой, которая давно его интересует, но любые попытки почитать научно-познавательную литературу оканчивается зависанием над первой же формулой. Сейчас мы попросим всех физиков закрыть глаза и уши и расскажем остальным, что такое кванты. Наверняка, вы все постоянно встречаете это слово в литературе, телевизорах, интернетах, шаражкиных конторах и нанотехнолохотронах. Пора уже восполнить пробел и немножко врубиться в тему.
9 фото.
1. Самый простой способ объяснить, что такое кванты – это аналогия.
Возьмем расстояние между вашими глазами и монитором. Чисто математически это расстояние можно разделить на несколько отрезков. Вполовину, еще на четыре, на восемь частей. И так, например, до бесконечности. И может показаться, что если вы захотите ткнуть пальцем в монитор, то не сможете это сделать, потому что это расстояние делится до бесконечности. Но вы знаете, что физически вы это сделаете без проблем, потому что существует мельчайшая единица расстояния, меньше которой уже ничего нет.
Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн. Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.
Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!
2. Теперь возьмем другой пример из жизни. Энергию как она есть. Вы поджарили шашлык, и он, стало быть, теперь горячий. Излучает тепло, которое в общем случае является тем, что мы называем энергией, а физики — электромагнитными волнами. Жизненный опыт нам подсказывает, что энергия существует в виде непрерывных волн (помните, непонятные синусоиды на уроках алгебры). То есть энергия, как мы считаем, излучается непрерывно. До начала XX века все ученые мира тоже так думали.
А вот и нет. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы вэб-программист и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.
3. Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.
О том, что кванты существуют, никто не догадывался. Пока физики чисто из интереса не решили попрактиковаться в расчетах на всяких идеальных ситуациях. Они заморочились на так называемом абсолютно черном теле. Это такая выдуманная фиговина, типа духовки, которую нагревают, а она при этом не теряет (не отражает) ни капельки энергии.
Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И как ни крути, но у них выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечные не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла лесом.
4. Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто подогнал результат, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной.
Хорошая аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.
5. Планк сам не понял, что открыл – до конца жизни он был противник квантовой физики. Квантование энергии было очень оскорбительным для классиков. Один известный ученый-шутник объяснял квантование энергии так: это все равно, что природа разрешила либо пить целый литр пива сразу, либо вообще не пить ничего, не допуская промежуточных доз.
Формула Планка относительно излучения абсолютно черного тела выдала адекватный результат без всяких бесконечностей. Потому что кусочки энергии в отличие от бесконечно малых величин можно подсчитать.
6. Окончательно добил классическую физику Эйнштейн. Его первым открытием была совсем не теория относительности. А объяснение фотоэффекта.
Фотоэффект это когда свет падает на пластинку и выбивает из нее электроны. Только вот энергия выбитых электронов не зависит от увеличения мощности (яркости) света, увеличивается только их число, а не скорость. Энергия выбитых из пластинки электронов растет, если увеличить частоту света: то есть посветить не красным, а, например, фиолетовым светом. А свет с малой частотой, типа очень красного, вообще не производит эффекта.
Вот это явление вообще никто не мог объяснить в рамках классической физики.
7. Никто не мог, кроме Эйнштейна. Чтобы объяснить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь Планк применял свою теорию только к тепловым излучениям.
Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).
При фотоэффекте в силу размеров сражение между электроном и фотоном идет один на один. Чтобы фотон при столкновении с электроном вырвал последний из металлической пластинки, он должен иметь для этого достаточное количество энергии. А если применить формулу Планка именно для света, то выходило, что энергия каждого фотона пропорциональна частоте световой волны, то есть отдельно взятый фотон обладает определенной энергией, зависящей от собственной частоты. Вот и получалось, что частота света (его цвет) определяет скорость вылетающих электронов, а интенсивность света влияет только на количество выбитых электронов.
Таким образом, Эйнштейн показал, что электромагнитная волна (свет) состоит из маленьких частиц – фотонов, которые в свою очередь представляют собой маленькие порции или кванты света.
8. И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании – не поверят и вызовут санитаров.
Эйнштейн был злостным противником квантовой физики. Он до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там Нильсы Боры, Гейзенберги, Ландау открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна квантовые штучки были подтверждены экспериментально и окончательно.
Может быть, в дальнейших наших ликбезах мы заглянем в парадоксы квантовой физики, если нам хватит слов и умения объяснить их человеческим гуманитарным языком.
Теперь все.
Источник: www.yaplakal.com/
9 фото.
1. Самый простой способ объяснить, что такое кванты – это аналогия.
Возьмем расстояние между вашими глазами и монитором. Чисто математически это расстояние можно разделить на несколько отрезков. Вполовину, еще на четыре, на восемь частей. И так, например, до бесконечности. И может показаться, что если вы захотите ткнуть пальцем в монитор, то не сможете это сделать, потому что это расстояние делится до бесконечности. Но вы знаете, что физически вы это сделаете без проблем, потому что существует мельчайшая единица расстояния, меньше которой уже ничего нет.
Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн. Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.
Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!
2. Теперь возьмем другой пример из жизни. Энергию как она есть. Вы поджарили шашлык, и он, стало быть, теперь горячий. Излучает тепло, которое в общем случае является тем, что мы называем энергией, а физики — электромагнитными волнами. Жизненный опыт нам подсказывает, что энергия существует в виде непрерывных волн (помните, непонятные синусоиды на уроках алгебры). То есть энергия, как мы считаем, излучается непрерывно. До начала XX века все ученые мира тоже так думали.
А вот и нет. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы вэб-программист и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.
3. Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.
О том, что кванты существуют, никто не догадывался. Пока физики чисто из интереса не решили попрактиковаться в расчетах на всяких идеальных ситуациях. Они заморочились на так называемом абсолютно черном теле. Это такая выдуманная фиговина, типа духовки, которую нагревают, а она при этом не теряет (не отражает) ни капельки энергии.
Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И как ни крути, но у них выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечные не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла лесом.
4. Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто подогнал результат, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной.
Хорошая аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.
5. Планк сам не понял, что открыл – до конца жизни он был противник квантовой физики. Квантование энергии было очень оскорбительным для классиков. Один известный ученый-шутник объяснял квантование энергии так: это все равно, что природа разрешила либо пить целый литр пива сразу, либо вообще не пить ничего, не допуская промежуточных доз.
Формула Планка относительно излучения абсолютно черного тела выдала адекватный результат без всяких бесконечностей. Потому что кусочки энергии в отличие от бесконечно малых величин можно подсчитать.
6. Окончательно добил классическую физику Эйнштейн. Его первым открытием была совсем не теория относительности. А объяснение фотоэффекта.
Фотоэффект это когда свет падает на пластинку и выбивает из нее электроны. Только вот энергия выбитых электронов не зависит от увеличения мощности (яркости) света, увеличивается только их число, а не скорость. Энергия выбитых из пластинки электронов растет, если увеличить частоту света: то есть посветить не красным, а, например, фиолетовым светом. А свет с малой частотой, типа очень красного, вообще не производит эффекта.
Вот это явление вообще никто не мог объяснить в рамках классической физики.
7. Никто не мог, кроме Эйнштейна. Чтобы объяснить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь Планк применял свою теорию только к тепловым излучениям.
Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).
При фотоэффекте в силу размеров сражение между электроном и фотоном идет один на один. Чтобы фотон при столкновении с электроном вырвал последний из металлической пластинки, он должен иметь для этого достаточное количество энергии. А если применить формулу Планка именно для света, то выходило, что энергия каждого фотона пропорциональна частоте световой волны, то есть отдельно взятый фотон обладает определенной энергией, зависящей от собственной частоты. Вот и получалось, что частота света (его цвет) определяет скорость вылетающих электронов, а интенсивность света влияет только на количество выбитых электронов.
Таким образом, Эйнштейн показал, что электромагнитная волна (свет) состоит из маленьких частиц – фотонов, которые в свою очередь представляют собой маленькие порции или кванты света.
8. И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании – не поверят и вызовут санитаров.
Эйнштейн был злостным противником квантовой физики. Он до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там Нильсы Боры, Гейзенберги, Ландау открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна квантовые штучки были подтверждены экспериментально и окончательно.
Может быть, в дальнейших наших ликбезах мы заглянем в парадоксы квантовой физики, если нам хватит слов и умения объяснить их человеческим гуманитарным языком.
Теперь все.
Источник: www.yaplakal.com/