Не верьте своим глазам: Путеводитель по оптическим иллюзиям

Всё, что вы увидите — самообманПопробуйте представить, что эволюция жизни на планете пошла другим путём и животные (в том числе и мы с вами) не смогли обзавестись таким чувством, как зрение. Не получается? Неудивительно — мы так привыкли полагаться на свои глаза, что даже не можем вообразить себе, каким бы был окружающий мир без оптической составляющей. При всей важности зрения, оно не так уж совершенно — скажем, некоторые сочетания сигналов способны «перехитрить» мозг (как известно, «видим» мы нейронами, а не глазами), заставив человека путаться в размерах предметов или угадывать «движение» в статическом изображении. Теперь, внимание! Сядьте поудобнее, «выключите» все чувства кроме зрения и сосредоточьтесь на экране — речь пойдёт об оптических иллюзиях.

Классические оптические иллюзииИстория оптических иллюзий насчитывает не одну тысячу лет, ещё в 350 году до нашей эры Аристотель писал: «Нашим чувствам можно доверять, но их всё же легко обмануть». Великий мыслитель заметил, что если некоторое время смотреть на водопад, а затем перевести взгляд на неподвижный горный склон, может показаться, будто скалы движутся в направлении, противоположном потоку. Современные исследователи называют этот оптический феномен эффектом последействия движения или иллюзией водопада.

Когда мы наблюдаем за потоком воды, часть нейронов в нашем мозге адаптируется к однонаправленному перемещению световых сигналов, в результате, глядя после водопада на статический объект, мы некоторое время продолжаем «видеть» движение, только в обратном направлении.

Иллюзия восприятия относительных размеров

В XIX-м веке началось активное изучение свойств восприятия и особенностей органов чувств человека. Именно тогда исследователями были разработаны оптические иллюзии, которые сейчас считаются классическими, в первую очередь — иллюзия Эббингауза.

Даже если вы не слишком интересуетесь историей психологии, она вам наверняка знакома, взгляните на рисунок. Вы, конечно, понимаете, что размеры оранжевых кругов одинаковы, так как видели такие иллюзии тысячу раз, но глаза по-прежнему вам врут — на доли секунды возникает ощущение, они всё-таки разные. Мозг человека определяет размеры предметов и изображений, исходя из величины смежных объектов и неизбежно попадает в ловушку — на фоне крупных чёрных кругов оранжевый кажется меньшим, чем рядом с маленькими кружками.

Иллюзия восприятия глубины

Итальянский психолог Марио Понцо в начале XX-го века одним из первых среди учёных продемонстрировал миру, что на восприятие размеров предметов влияют не только смежные объекты, но и глубина фона. Итальянец разработал классическую иллюзию, которая сейчас носит его имя.

Иллюзия Понцо выглядит очень просто — между двумя наклонными линиями расположены две одинаковые горизонтальные, при этом одна из них воспринимается, как более длинная. Наклонные линии создают перспективу, мозг полагает, что верхняя горизонтальная линия расположена «дальше», чем нижняя и делает поправку на «расстояние» — за счёт этого и возникает любопытный эффект.

«Волшебные» линии Мюллера-Лайера

Другая хрестоматийная оптическая иллюзия, которой более ста лет — иллюзия Мюллера-Лайера. Её суть также достаточно проста — на рисунке изображены линии со стрелками на концах, большей кажется та, что обрамлена «хвостами» стрел.

Учёные до сих пор спорят о механизме возникновения иллюзии, в настоящее время наиболее популярна следующая трактовка. Три сходящиеся линии мозг интерпретирует в качестве части трёхмерного объекта, при этом линии, образующие «остриё» воспринимаются как более близкий объект (скажем, угол здания при взгляде снаружи). «Хвостовые» стрелки в свою очередь, создают иллюзию удалённого объекта («угол комнаты»). Как и в случае с иллюзией Понцо, мозг «компенсирует расстояние» до объекта, в результате чего линии видятся разными.

Загадка Гельмгольца

Сюрпризы мозгу преподносят не только сходящиеся линии, но и параллельные вертикальные или горизонтальные. В конце XIX-го века немецкий физик и физиолог Герман фон Гельмгольц показал, что расчерченный горизонтальными линиями квадрат выглядит шире и ниже, чем точно такой же, но составленный из вертикальных линий.

Открытый Гельмгольцем феномен широко используется в производстве одежды, однако вопреки распространённому заблуждению, горизонтальные полоски на свитерах и платьях не «полнят», а строго наоборот — зрительно делают фигуру уже и выше. В модных глянцевых журнала часто встречаются советы вроде: «Носите одежду с вертикальными полосками, чтобы выглядеть стройнее», однако наука безжалостно это опровергает. Взгляните на иллюзию Гельмгольца и сами убедитесь в том, что эффект прямо противоположен.

Стоит отметить, что этот оптический обман изучен вдоль и поперёк, однако учёные пока не могут прийти к единому мнению о механизмах его возникновения.



Классические ранние иллюзии перевернули представления людей об окружающем мире — как оказалось, «верить своим глазам» можно далеко не всегда. Николас Уйэд, специалист по истории оптических иллюзий из университета Данди (Шотландия) уверен, что обманы зрения сыграли заметную роль в изучении свойств восприятия: «Создавая иллюзии, учёные осознали, что даже понимание механизма работы глаз не даёт целостного представления о природе зрения». Уэйд отмечает, что пионеры создания оптических иллюзий делали попытки объединить их одной общей теорией, однако они не увенчались успехом. Как позже обнаружилось, реакции человеческого мозга на оптические иллюзии гораздо сложнее и разнообразнее, чем виделось исследователям на рубеже XIX-го и XX-го столетий.

Иллюзии в XX-м векеВ «век войн и революций» человечество стало свидетелем множества прорывов в представлениях о природе оптических иллюзий. Достижения науки и техники дали специалистам возможность иначе взглянуть на проблему. Скажем, эксперименты Торстена Визеля и Дэвида Хьюбела доказали, что за восприятие различных зон зрительного поля отвечают разные нейроны — за это открытие исследователям в 1981-м году вручили Нобелевскую премию по медицине.



Чуть позже учёных за зрительные искажения взялись художники — в 1950-х годах появилось целое направление в искусстве, посвящённое оптическим иллюзиям, оно получило название оп-арт (от англ. optical art — «оптическое искусство»). Одним из основоположников оп-арта считается французский художник и скульптор Виктор Вазарели, его работы часто приводят в качестве ярких примеров оптических иллюзий.

















Иллюзии нашего времениВ начале XXI-го века интерес к зрительным искажениям продолжает расти — появляются новые научные теории, с помощью которых учёные пытаются объяснить механизмы возникновения оптических иллюзий. Согласно одной из них, искажения происходят из-за того, что человеческий мозг постоянно «предсказывает» изображение, чтобы компенсировать задержку между самим событием и моментом его восприятия. Для примера — пока вы читаете эту статью, ваш мозг обрабатывает световые сигналы, поступающие от компьютерного монитора или экрана гаджета. На это требуется определённое время, поэтому вы в некотором роде видите не настоящее, а прошлое.

Нейробиолог Марк Чангизи полагает, что именно попытками мозга «предвидеть» картинку объясняются некоторые зрительные искажения.



Эксперименты Чангизи и его коллег из Калифорнийского технологического института показывают, что этой теории не противоречит ни одна из классических оптических иллюзий. В числе наиболее показательных примеров «предсказания» изображения мозгом Чангизи называет знаменитую иллюзию Геринга. Когда человек движется вперёд, видимые им объекты движутся по радиальным линиям, поэтому мозг склонен воспринимать подобные изображения как признак перемещения в пространстве. «Эти механизмы отлично работают в реальной жизни, но они же заставляют мозг ошибаться, когда человек видит радиальные линии и при этом остаётся на месте» — отмечает исследователь.

Куб Неккера и другие «капризы» мозга

Изобретение магнитно-резонансной томографии стало настоящим подарком для исследователей оптических иллюзий — наука наконец-то смогла хотя бы в общих чертах понять, что происходит в мозге человека при их восприятии. Так, изучая мозговую деятельность человека, глядящего на куб Неккера, учёные сделали вывод, что мозг неоднозначно воспринимает глубину изображения. Нейроны будто «спорят» между собой, какую картинку следует считать «истинной», в результате наблюдатель видит куб то в одном положении, то в другом.

Схожим образом дело обстоит и с другой известной оптической иллюзией — так называемой сеткой Германа. Взгляните на изображение — боковым зрением вы «видите» серые точки на пересечении белых линий, но стоит сфокусировать взгляд на одной «серой точке», как она тут же «исчезает». Согласно одному из наиболее популярных среди учёных объяснений этого явления, среди нейронов идёт непрерывная «борьба» за обработку тёмных и светлых участков изображения, что и заставляет человека «замечать» мерцающие точки.

Новейшие представления об иллюзияхБлагодаря современным методам исследований человечество знает, что за восприятие оттенков цвета, форм предметов и их перемещения в пространстве отвечают разные участки мозга, но каким образом мы получаем целостное изображение, во многом остаётся загадкой. Энтузиасты разрабатывают всё новые и новые способы обмануть зрение, переосмысливая и дополняя классические иллюзии. Глядя на них, мы прилежно «позволяем» собственному мозгу ввести нас в заблуждение, а в итоге появляется больше вопросов, чем ответов.

В наше время интерес к проблеме столь высок, что на протяжении вот уже десяти лет специалисты ежегодно проводят конкурс на лучшую оптическую иллюзию. Скажем, в 2014-м году эту награду получила динамичная иллюзия Эббингауза, которая гораздо убедительнее обманывает зрение, чем классический статичный вариант. По словам невролога Сюзанны Мартинес-Конде, входящей в состав жюри конкурса, за счёт постоянного изменения размеров смежных объектов эффект новой иллюзии в несколько раз сильнее, чем у неподвижного изображения, предложенного Германом Эббингаузом.



Мартинес-Конде признаёт, что большая часть современных исследований оптических иллюзий основывается на работе, проделанной учёными XIX-го века. Скажем, Герман Гельмгольц первым понял, что человеческие глаза постоянно совершают быстрые согласованные движения, так называемые саккады. Чтобы понять о чём речь, закройте один глаз и слегка надавите пальцем на нижнее веко другого — «картинка», которую видит ваш мозг тут же придёт в движение. В обычной жизни мы не замечаем этих микроскопических «подёргиваний», потому что мозг давным-давно научился сглаживать изображение, но когда он сталкивается с непривычной ситуацией (механическое воздействие на глазное яблоко), саккады проявляют себя во всей красе.

По мнению Сюзанны, именно саккады играют ключевую роль в знаменитой иллюзии «Вращающиеся змеи», которую разработал японский психиатр Акиоши Китаока. В ходе экспериментов со «Змеями» Мартинес-Конде и её коллеги выяснили, что при взгляде на иллюзию активизируются те же нейроны, что и при взгляде из окна быстро движущегося поезда, когда кажется, что пейзаж «едет мимо», а не наоборот. При этом, если с помощью некоторых ухищрений заставить наблюдателя прекратить саккады, иллюзия исчезает.



Невролог объясняет это следующим образом: видимость движения во «Вращающихся змеях» создаётся за счёт большого количества оптической информации, поступающей в разные участки сетчатки глаз. Определённое сочетание световых сигналов обманывает мозг, заставляя его воспринимать статическое изображение, как динамичное. Саккады постоянно обновляют «картинку», не давая мозгу адаптироваться к ней, если же они приостанавливаются, через некоторое время уходит и иллюзия движения.

Как и многие другие специалисты по оптическим иллюзиям, Сюзанна Мартинес-Конде уверена — далеко не все механизмы зрительного восприятия открыты, а те, что уже известны, пока не слишком хорошо изучены. Это значит только одно — не стоит слепо верить своим глазам, они вас ещё не раз обманут.

via factroom.ru