Новый материал может заменить кремний, удвоив КПД солнечных элементов

Американские исследователи показали, что в солнечных элементах на основе перовскитов носители заряда, обладающие избыточной энергией, способны преодолевать значительное расстояние, прежде чем рассеют ее в виде тепла. Это означает, что реализовать фотоэлектрические элементы на горячих носителях, для которых теоретический предел КПД вдвое выше, чем у обычных кремниевых, на практике вполне возможно. Исследование опубликовано в журнале Science.





В самых распространенных на сегодняшний день солнечных элементах, использующих в качестве полупроводника кремний, теоретически возможный коэффициент полезного действия едва превышает 30 процентов.

Это связано с тем, что кремниевые элементы способны использовать спектр солнечного света только частично. Фотоны, обладающие энергией ниже пороговой, просто не поглощаются, а обладающие слишком высокой приводят к образованию в фотоэлементе так называемых горячих носителей заряда (например, электронов). Время жизни последних составляет около пикосекунды (10-12 секунды), потом они «остывают», то есть рассеивают избыточную энергию в виде тепла. Если бы горячие носители удавалось собирать, это повысило бы теоретический предел КПД до 66 процентов, то есть вдвое. Несмотря на то что в некоторых экспериментах небольшое сохранение энергии удавалось наблюдать, элементы на горячих носителях пока остаются скорее гипотетическими.

Ученые из Университета Пердью и Национальной лаборатории возобновляемой энергетики (США) внесли вклад в изучение нового перспективного класса фотоэлектрических элементов на основе перовскитов и продемонстрировали, что в таких элементах горячие носители не только обладают повышенным временем жизни (до 100 пикосекунд), но и способны «пробегать» значительные дистанции в несколько сотен нанометров (что сопоставимо с толщиной слоя полупроводника). 

Металлорганические перовскиты получили свое название благодаря кристаллической структуре. Она по сути повторяет структуру природного минерала — перовскита, или титаната кальция. Химически они представляют собой смешанные галогениды свинца и органических катионов. Авторы работы использовали распространенный перовскит на основе иодида свинца и метиламмония. Исходя из того, что в перовскитах время жизни горячих носителей существенно увеличено по сравнению с другими полупроводниками, авторы решили выяснить, на какое расстояние могут переноситься горячие носители за время их остывания. С использованием ультраскоростной микроскопии исследователям удалось непосредственно пронаблюдать транспорт горячих носителей в тонких пленках перовскита с высоким пространственным и временным разрешением. 

 





Транспорт горячих носителей в полупроводнике в течение первой пикосекунды после возбуждения

Оказалось, что медленное остывание в перовскитах сопряжено с дальностью пробега, которая составила до 600 нанометров. Это означает, что носители заряда с избыточной энергией теоретически способны преодолевать слой полупроводника и достигать электрода, то есть их возможно собирать (правда, как это реализовать технически, авторы работы не обсуждают). Таким образом, солнечные элементы на горячих носителях, возможно, удастся воплотить в жизнь, взяв за основу перовскиты. 





К настоящему времени максимальный КПД, доходящий до 46%, был зарегистрирован для многослойных многокомпонентных фотоэлектрических элементов, в состав которых входит арсенид галлия, индий, германий со включениями фосфора. Такие полупроводники используют свет более эффективно, поглощая различные части спектра. Производство их очень дорого, поэтому такие элементы используются только в космической промышленности. Ранее мы писали также про элементы на основе теллурида кадмия, которые можно производить в виде гибких и тонких пленок. Несмотря на то, что общий вклад в производство электроэнергии солнечной энергетики пока не превышает 1%, темпы роста можно назвать взрывными. Особенно заинтересованы в использовании возобновляемой энергии солнца такие страны как Индия и Китай. Компания Google в конце 2016 года заявила, что в этом году собирается полностью перейти на возобновляемую энергетику.

В настоящее время в быту используются в основном кремниевые фотоэлементы, реальный КПД которых составляет 10–20 процентов. Элементы на основе перовскитов появились менее 10 лет назад и сразу вызвали к себе заслуженный интерес. КПД таких элементов быстро увеличивается и практически доведен до 25 процентов, что сопоставимо с лучшими образцами кремниевых фотоэлементов. К тому же они очень просты в производстве. Несмотря на технологический успех, физические принципы работы перовскитовых элементов относительно мало изучены, поэтому обсуждаемая работа ученых из США вносит важный вклад в фундаментальные основы фотовольтаики и, конечно, влечет за собой перспективу дальнейшего увеличения КПД солнечных элементов. опубликовано  

 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: //phys.org/news/2017-04-crystalline-material-silicon-efficiency-solar.html