10 измерений реальности: просто и понятно о теории струн Страница 1 из 4

Считаем от трёх до десяти

Самая большая проблема у теоретических физиков — как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего.

Но оказалось, что самое удобное количество измерений, необходимое для работы этой теории — целых десять (девять из которых — пространственные, и одно — временное)! Если измерений больше или меньше, математические уравнения дают иррациональные результаты, уходящие в бесконечность — сингулярность.

Следующий этап развития теории суперструн — М-теория — насчитала уже одиннадцать размерностей. А ещё один её вариант — F-теория — все двенадцать. И это вовсе не усложнение. F-теория описывает 12-мерное пространство более простыми уравнениями, чем М-теория — 11-мерное.





 

Конечно, теоретическая физика не зря называется теоретической. Все её достижения существуют пока что только на бумаге. Так, чтобы объяснить почему же мы можем перемещаться только в трёхмерном пространстве, учёные заговорили о том, как несчастным остальным измерениям пришлось скукожиться в компактные сферы на квантовом уровне. Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трёхмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Двухмерная проекция подобный многообразий выглядит приблизительно так:





 

Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это — быть теоретическим физиком.

Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами.

Точка, точка, запятая

Начнём с начала. Нулевое измерение — это точка. У неё нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.

Поставим рядом с первой точкой вторую и проведём через них линию. Вот вам и первое измерение. У одномерного объекта есть размер — длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата.

Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами.

Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить.

Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка:

 



  • 259
  • 20/09/2016


Поделись



Подпишись



Смотрите также

Новое