Ветротурбина для домохозяйств

Поделиться



Два брата из Индии Arun и Anoop George в настоящее время работают над тем, чтобы сделать ветроэнергетику более доступной. Благодаря стартапу Avant Garde Innovations они разработали ветряную турбину для домохозяйств, которую надеются предложить за 50 000 рупий или около 750 долларов.





Братья спроектировали ветротурбину размером с потолочный вентилятор для использования в быту. По данным The Times of India, турбина может генерировать около одного-трех кВт⋅ч в день, этой энергии достаточно для питания дома.

Прекращение энергетической бедности является одной из главных целей братьев. На своем сайте они подчеркивают, что около миллиарда людей во всем мире не имеют доступа к электроэнергии. Arun George в видеоролике в частности говорит: «Независимо от мощности, которую они производят, в течение жизни ветряных турбин, составляющей около 20 лет,  электричество будет бесплатным».





Ветротурбина братьев уже получила международное признание. Проект был внесен в список 20 лучших инноваций Cleantech в Индии в рамках Глобальной инновационной программы Cleantech, организованной совместно с United Nations Industrial Development Organization, Cleantech Open USA, Global Environment Facility и индийским правительством. ООН также включила стартап Avant Garde Innovations в инвестиционный каталог экологически чистых источников энергии в размере 1 млрд. долл. США, который был представлен на COP21.





В прошлом году Avant Garde Innovations была единственной индийской компанией в области чистой энергетики, приглашенной на 7-ую конференцию по чистой энергетике (7th Clean Energy Ministerial) в Силиконовой Долине, и была отмечена как один из 100 лучших стартапов на всемирном фестивале стартаов NEWENERGY в Казахстане.

Братья стремятся запустить свой продукт во втором квартале этого года. опубликовано  



P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: www.energy-fresh.ru/windenergy/windturbine/?id=14146

Экоэнергетика в современном строительстве и архитектуре

Поделиться



Жизнь современной цивилизации невозможна без энергии, в основном тепловой и электрической. Сейчас 80 % энергии для России дают ископаемые источники, углеводородное и ядерное сырьё. Для Запада это примерно 60 %. Западными учёными и экономистами предсказывается, что уже к 2030 году использование энергии ископаемого топлива сократится в среднем до 40 %.

Выход для России из грядущих кризисов — как можно быстрей и интенсивней развивать нетрадиционную альтернативную энергетику, основываясь только на ВИЭ (на трёх её основных частях: вода, воздух и рациональные дозы солнечного излучения) и на проектах российских изобретателей. Локальные или индивидуальные электростанции должны быть у каждого потребителя (будь это частник, фермер или предприятие), каждый дом должен быть генератором энергии. В этом выход из энергетического кризиса для всех стран.

Актуальность вопроса использования для энергоснабжения зданий экологически безопасной энергии, выработанной из возобновляемых источников, уже давно даже не обсуждается. Однако имеется проблема выбора самого источника, вопрос, что эффективнее использовать: энергию солнечной радиации, ветра, грунта, воды и т.п.? Например, ветроэнергетика и гидроэнергетика, использующие естественные или искусственно разогнанные потоки воздуха и воды, теперь являются новыми направлениями генерации энергии для индивидуального пользования (включая гидроэлектроустановки и пневмоэнергетику), в частности, для городов с высотными зданиями, фермерских хозяйств с посёлками и малыми и крупными производствами. Какие инновационные решения предлагаются изобретателями в данной области на сегодняшний день, в период участившихся природных катаклизмов?

В европейских странах генерация электроэнергии на ВИЭ производится за счёт использования силы ветра (в основном традиционными пропеллерными установками) и составляет значительную и постоянно растущую долю в общей выработке энергии для зданий различного назначения, в городах и промзонах. Примерно столько же энергии получает Европа и от солнечных батарей. Подобное энергообеспечение городов и сёл распространено по всей Европе, в США, а также активно внедряется в странах Востока, например, в Китае и Индии. Эти схемы «чистой» энергетики пытаются внедрять и в России, но зарубежное происхождение соответствующих энергоустановок создаёт проблемы в этом процессе. Развитие ветроэнергетики происходит на базе пропеллерных ветряных электростанций (ВЭС) западных образцов, а также ветропарков, которые работают по схеме централизованного снабжения потребителей. Ветропарки так же удалены от потребителя энергии на значительное расстояние, как и ТЭЦ, АЭС и ГЭС, которые через ЛЭП и подстанции связаны с потребителем. Традиционные ВЭС, по нашему мнению, технически и морально устарели и представляют опасность для окружающей природы и для людей.





В европейских странах генерация электроэнергии на ВИЭ производится за счёт использования силы ветра и составляет значительную и постоянно растущую долю в общей выработке энергии для зданий различного назначения, в городах и промзонах. Примерно столько же энергии получает Европа и от солнечных батарей. Подобное энергообеспечение городов и сёл распространено по всей Европе, в США, а также активно внедряется на Востоке

У солнечных элементов пока имеется два недостатка: большая цена за киловатт произведённой энергии при низком КПД; покрытие ими огромных площадей, что экологически небезопасно и часто экономически невыгодно.

Предпочтение одной топливной энергетики, в том числе ядерных технологий, будучи чуть-чуть «разбавленных» гидроэнергетикой, может привести Россию к энергетическому кризису (от невостребованных топливных энергоресурсов) примерно уже в 2020 году, особенно если другие страны предпочтут развивать альтернативные виды энергетики ещё активнее, несмотря на большие затраты. В последние годы «нетопливная» часть энергетики резко увеличивается (от 15 до 50 %) — и только в России она составляет 0,7 %, и за пять лет планируется довести её до 4,5 %, при этом Запад не будет стоять на месте. Каким бы топливо ни было, как бы не называлось, оно всё равно должно гореть, в том числе ядерное, то есть распадаться и уничтожаться, засорять и разрушать экосферу нашей планеты. За десять лет средний уровень генерации энергии в Европе из ВИЭ может дойти 35-40 %, при сохранении нынешних темпов развития, но процесс наверняка будет ускоряться с появлением новых, всё более эффективных решений в этой области, в том числе от российских изобретателей. Уже многие страны планируют довести долю энергии, получаемой из ВИЭ, до 50 % и выше к 2030 году. Возможно, за рубежом так и будет, но только не в России, так как Западу всего-то надо развить энергетику из возобновляемых источников вдвое или втрое (планы США), а России придётся начинать почти с нуля.

Самоэнергоснабжение или собственные генерации

Авторы, изучив существующие схемы энергообеспечения, пришли к выводу, что рациональнее и эффективнее развивать энергоснабжение потребителя (как в городе, так и на селе) по схеме собственной генерации с развитием «центробежного обеспечения», то есть совместить потребителя и источник генерации энергии в одну систему взаимовыручки. Такая схема позволит сократить до минимума необходимость в воздушных линиях электропередач и крупных подстанциях, а мегаполисы и другие населённые пункты освободятся от паутины проводов, сократятся отключения вследствие стихийных бедствий и прочих непредвиденных обстоятельств.

Природные катаклизмы последних лет в США, Европе, на Востоке и в России показали полную несостоятельность схемы централизованного энергообеспечения, то есть зависимости «от одного рубильника», что особенно опасно в периферийных районах нашей страны и в других странах. Любая техническая или стихийная авария, приводит к большим финансовым затратам. Например, американским ураганом «Синди» были на длительное время обесточены районы с населением до 7 млн человек. Почти то же самое происходит в Европе, Азии и, естественно, в России.

Наилучшая энергоэффективность заключается в самообеспечении отдельного здания или целого района электроэнергией на бестопливной основе, то есть на ВИЭ, причём только на трёх её основных составляющих (вода — в любом её проявлении, воздух и солнце в рациональных дозах). При этом вырабатывающие энергию установки должны быть размещены в пределах здания: в цокольной части или подвале, или на технических этажах, на крышах, или в специальных пристройках, в виде энергетических стел, пилон, или в каких либо других архитектурных формах. То есть группы зданий или вся территория района может иметь общий индивидуальный центр собственной энергогенерации на ВИЭ и локальную центробежную сеть — по принципу взаимовыручки.

Разные участки поверхности земли, в том числе городские кварталы, в разное время года нагреваются по-разному. Можно говорить только о преимущественном сезонном направлении ветра и проценте солнечных дней в году. Среднегодовые скорости воздушных потоков в России незначительны (около 4,5 м/с), значит, по полгода все эти западные ветряки будут простаивать или же еле-еле вертеться. Но если выйти на высоту до 100 м, используя подходящую естественную возвышенность или высотное здание, то почти на половине заселённой территории любой страны, тем более в городах с высотками, можно ставить эффективные ветроагрегаты, в основном виндроторного типа, рационально вписанные в архитектуру зданий или в природный ландшафт. Речь идёт о низкоскоростных малых ветроагрегатах с вертикальными осями вращения, а не пропеллерного типа, как принято сейчас на Западе, которые устанавливаются даже на крышах зданий. Традиционные ветряки на зданиях применять нерационально — от ураганов их защитить трудно, вибрацию не скроешь, да и не так уж много энергии они вырабатывают за год.

На фото 1 показано здание на улице Twelve West в американском городе Портленде. Оно прежде всего привлекает внимание ветрогенераторами, расположенными на крыше. Арендаторы и жильцы этого многофункционального здания знают, что это не единственный источник возобновляемой энергии на его территории. Здание находится по соседству с быстроразвивающейся частью города West End. Своим примером оно демонстрирует, что и в условиях плотной городской застройки можно реализовать экологичный, хотя и малоэффективный проект.





На фото 2 представлен проект восстановления города Детройта: подобное «энергообеспечение», скорее, превратит его в пустыню. План хорош только с точки зрения возрождения ландшафта, но размещение в таком количестве «ветряков на палочках» и тысячи гектар солнечных элементов не только сведут на нет усилия и задумки авторов (Стивен Фогеля и Майкла Ван Валкенбурга), но и погубят всю территорию будущего города. После запуска на полную мощность всех источников энергии (ВЭС), город, парки, сады и поля сельской продукции покинут насекомые, в том числе пчёлы, затем птицы, животные, а затем, видя всё это, уйдут и люди. Флора водоёмов захиреет, погибнет и фауна. Идея хорошая, а проект мертворождённый, причём только из-за «модного», но непродуманного варианта энергообеспечения города традиционными альтернативными системами. Необходимо убрать ветряки или заменить их на турбины, вписанные в архитектуру зданий, уменьшить до рационального минимума солнечные элементы. Сделать ставку только на нетрадиционную гидроэнергетику нового типа, незаметно вложенную в ландшафтный дизайн и архитектуру зданий, в том числе используя водоёмы и применяя комбинированные системы, типа пневмо-ГЭС и механические энергетические реакторы индивидуального пользования («ноу-хау» российских изобретателей, в том числе МТК).





В ветроэнергетике созданы отечественные энергоэффективные технологии, позволяющие практически повсеместно использовать энергию воздушного потока, даже, казалось бы, обладающего низким энергопотенциалом. В этом случае подключаются накопители энергии или другие типы генераторов. А применение комбинации всех энергоустановок по схеме «центробежного энергосамообеспечения» потребителя может изменить экономику городов и сёл. Наши ветряки могут устанавливаться в декоративных архитектурных «излишествах» зданий, в технических этажах или на выносных стелах и пилонах. Кроме того, если здания уже построены, и архитекторы не желают изменять облик и контуры объекта и встраивать ветроустановки и солнечные тепловые приборы, то можно возводить отдельно стоящую энергетическую стелу с набором энергогенераций на группу зданий или для снабжения целого района. Гидроустановки или пневмо-гидро-аккумулирующие энергостанции могут вписаться в архитектуру малоэтажных зданий, помещены в подвалы или в существующие водоёмы. Пневмо-ГЭС — вообще находка и для фермерских хозяйств, отдалённых от центрального электропитания, так как они дают возможность использовать не только электромеханизмы и электроинструменты, но и пневмоинструменты и пневмомеханизмы, и даже пневмотранспорт.

На крышах уже построенных высотных зданий в Москве или в других городах можно разместить, помимо оптимального количества ветровых турбин нового поколения, не нарушая архитектуры зданий, ещё и солнечные элементы, вписанные в архитектуру, а в подвалах дополнительно энергоустановки особого типа — гидро-гелио-пневмоэнергоустановки или «гидроколлайдеры».

Главная цель — использовать любое здание не только для проживания или производства, но и как электротепловую станцию. К зданию должна подводиться только труба с холодной водой из скважины под зданием, а при некоторых условиях ещё и газовая труба. У строящегося здания в боковых пилонах и на крышах могут находиться не только лифты, лестничные пролёты и т.п., но и энергетические установки, особенно в той части, которая выходит за пределы высоты здания. Последнее позволяет не только использовать ветер, но и рекуперировать восходящие потоки воздуха в здании. В подвалах такого сооружения могут быть размещены гидроэлектроустановки нового типа, запатентованные нашим коллективом. Данные устройства «утилизируют» сточные воды, что является основным источником энергообеспечения здания, а ветроустановки и солнечные элементы являются стартовой или вспомогательной генерацией.

Мы считаем, что необходимо «дробить» энергосистему на индивидуальные энергетические комплексы, то есть в основу должна быть положена энергетика крупного здания или двух-трёх близко стоящих. Затем индивидуальные системы следует объединять и развивать по принципу взаимной поддержки, соединяя электрокабелем, но не далее границ мегаполиса.

В связи с участившимися природными катаклизмами пора подумать о антиураганной архитектуре, особенно в поселениях. Ранее она называлась «бионической», то есть формы сооружений должны быть округлены, что улучшит сопротивляемость ветрам и ураганам и уменьшит тепловые потери. Но это дело будущего, а в настоящий момент в местах, подверженных частым и экстремальным воздействиям стихии, необходимо возводить защитные сооружения типа убежищ для малых поселений, фермерских хозяйств и т.д., где будет запас пищи, воды и собственной энергии, лучше на бестопливной основе. Вот над такими сооружениями и их оборудованием работают сейчас молодые архитекторы-строители и энергетики, в частности и наш коллектив. Мы разрабатываем методы быстрого возведения обтекаемых сооружений, например метод «мокрого торкретирования», опыт которого передаёт молодым строителям архитектор Н. Калиниченко, строитель-гидро-техник-изобретатель А. Яковенко, инженер-строитель С. Мирошниченко, консультант-технолог А. Галан и др. На Западе подобная архитектура уже много лет внедряется в строительную практику.





Возможно использовать любое здание не только для проживания или производства, но и как электротепловую станцию. У строящегося здания в боковых пилонах и на крышах могут находиться энергоустановки

Не менее интересное направление малой комбинированной энергетики для отдельных зданий (в том числе защитных противоураганных убежищ), фермерских хозяйств, малых предприятий и воинских частей с МЧС основано на использовании силы «взрывной волны», то есть это так называемые бескомпрессорные пневмо-ГЭС, разрабатываемые в МТК-«iзобретатель» (патенты есть, аналогов на Западе нет) и позволяющие обеспечить многих потребителей, особенно на удалённых территориях, независимой индивидуальной генерацией известных видов.

В дополнение к ним могут быть применены и другие виды собственной генерации энергии, например, получающие всё большее распространение механические генераторы, не требующие никаких внешних ресурсов. Для того чтобы внедрить описанные решения, необходим опытный полигон и средства. Рассматривается идея использовать для передачи энергии в посёлке и малых городах не провода на столбах (опорах), а с помощью пневмопроводов под землёй.

Коллектив МТК-«iзобретатель» участвовал в проекте будущего «Агротехнопарка» в части проектирования инфраструктуры энергообеспечения жилого и производственного комплекса парка.

Авторами предлагались турбины с горизонтальными лопастями на крышах зданий с поддувом воздуха от вентиляции, что более эффективно для высотных зданий, чем традиционные решения. В проектах авторы предлагали использовать сточные воды зданий для выработки энергии и тепла, а также накопители энергии в периоды безветрия. Подобные поселения могут тиражироваться по всей стране, даже там, где погодные условия позволяют желать лучшего.

Проект одиночного здания, предложенного авторским коллективом для «Агротехнопарка», включает в себя виндроторный ветряк на крыше (патент получен), около 30 м2 солнечных элементов, а также микро-пневмо-ГЭС.

Настоящий «умный» дом

Понятие «умного дома» в энергетическом разрезе, на наш взгляд, должно быть шире традиционного понятия энергоэффективности и включать в себя не только элементы, обеспечивающие его пассивность и способность к энергосбережению, но и иметь элементы самогенерации. Они должны поначалу давать возможность сосуществования с централизованным энергообеспечением в некотором соотношении, а в дальнейшем — полную энергонезависимость. На взгляд авторов, «умный» дом должен выживать энергетически при любых природных катаклизмах и при отключении электричества по любым причинам.

Хорошо бы ещё и конструкция и форма зданий были антиураганными, в том числе и у малоэтажных строений. Разработки молодых энергетиков России (изобретателей) позволяют использовать рациональное количество генераций за счёт их комбинирования: то есть энергию солнца, воздуха (в том числе нагретый восходящий поток воздуха внутри высотных зданий или предприятий), энергогидросистемы, например, на утилизированных сточных водах высотного здания, гидроустановки на замкнутых потоках, микро-ГЭС на внутренних накопительных бассейнах и другие оригинальные схемы электроустановок (это «ноу-хау» МТК). Подобные новации в малой индивидуальной энергетике (бестопливной) позволят возвратить затраченную централизованную энергию в объёме от 30 до 100 %, в зависимости от размеров, назначения и архитектуры зданий, промпредприятий и фермерских хозяйств или целого района, как бы далеко от энергетического центра они не находились. Это относится и к фермерским хозяйствам, и к воинским частям и заставам, находящихся даже в отдалённых островах Приморья.

Понятие «умного дома» должно включать в себя не только элементы, обеспечивающие его пассивность и способность к энергосбережению, но и иметь элементы самогенерации





Новый подход к энергетике

Энергетика нашей цивилизации (если хотим дальше существовать или нормально жить), должна использовать только три основных возобновляемых источника — это вода, воздух и солнце, на остальные ископаемые источники, как и на атомную энергетику, должен быть объявлен мораторий, как на людские вредные привычки, иначе лечиться будет дороже. Необходим мораторий и на строительство крупных ГЭС с затоплением больших пространств. В дальнейшем при их закрытии/ликвидации они создадут огромную проблему.

На рис. 1 в центре первого круга — энергетика России в 2020 году. Это правительственный проект. Даже из 4 % «зелёной альтернативы» (НВИЭ) реально «чистой энергией» можно считать только 1 %, значит, 99 % энергии РФ по всяким причинам являются и будут опасны для человека и уязвимы для будущей экономики. Энергия плотинных ГЭС с 19 % уменьшится до 13 %, причём 80 % из них уже будут в аварийном состоянии. Ремонт их весьма дорог, но прибавки мощности не даст, а лишь продлит агонию старения. Ветряки, которые обещают дать 4 %, все западные — на отечественные разработки правительство внимание не обращает. Да, «оттуда» установки идут готовые, но уже морально и технически устаревшие, поэтому Запад настойчиво навязывает их всем остальным странам. В России изобретатели уже сейчас ищут возможность замены пропеллеров на турбины-трансформеры, используя существующие опоры и технику. Имеющиеся ветропарки сносить нерационально, но заменить турбины необходимо.

Второй круг — это ожидаемая энергетика Европы в том же 2020 году. Энергия на ВИЭ в некоторых странах составит до 50 % а недостающее топливо Европа найдёт где угодно, только не в России. Вот когда европейские и американские «санкции» заработают на полную мощность.

Анализируя развитие традиционной энергетики и появляющейся нетрадиционной, на основных её составляющих — вода, воздух и солнечной энергии в рациональных дозах, мы пришли к выводу (и это можно практически доказать), что любая страна, да и вся планета может обеспечить себя и своё развитие энергией на этих возобновляемых природных источниках, причём почти без ЛЭП большой протяжённости. Имеется в виду создание индивидуальной энергетики для потребителя, причём только на российских изобретениях. Справедливости ради стоит отметить, что есть хорошие разработки и у западных изобретателей.

Последующие два круга на диаграмме объясняют наше предположение:

1. До 30 % энергии может дать использование донных и поверхностных течений морей и энергии потока рек, приливов без плотин и барьеров высотой от 1 м до природного максимума. Речь идёт о ГАЭС морского базирования, использующих комбинированную силу ветра, энергию солнца и волн.

2. До 35% энергии могут обеспечить нестандартные энергоустановки, использующие малые и сверхмалые природные потоки (их называют «низкопотенциальные потоки») с расходами от 20 л/с. Такие установки уже есть у российских изобретателей. Используются родники, про-

мышленные и бытовые стоки, гейзеры, водосбросы и т.д.

3. 20-30 % энергии можно получить на искусственных быстротоках, на принудительных напорах в кольцевых и спиральных лотках с естественным и принудительным разгоном потоков, а также ГЭС с напорными резервуарами и с импульсными турбинами (у авторов имеются патенты на «гидроколлайдеры», использующие силу искусственно разогнанного гидрокольца).

4. До 40-60 % энергии можно получить на стоячих водоёмах, в том числе искусственных или в небольших ёмкостях. Изобретатели предлагают новый тип гидроустановок (пневмо-ГЭС) и комбинированные энергостанции с использованием воздуха и солнца, а также механические генераторы.





Перспективные разработки предложены для оригинальных ГЭС на «взрывной волне» — эти станции могут работать даже на судах и подводных станциях. Кроме того, изобретатели уже предлагают электростанции на магнитных и гравитационных двигателях. Мы уверены, что скоро такие установки будут делать дети в школах на уроках труда. Далее получат массовое распространение (они уже есть) разработки на новых принципах отбора мощности — ветровые установки (гибридные турбины и трансформеры, способные работать в двух средах — в воде и на воздухе). Предлагаются донные ГЭС с новыми строительными технологиями. Все эти простые генерации могут дать до 200 % энергии, причём без какого бы то ни было топлива. Далее возможно использование различных видов синтезов, полей, энергии силикатов (в том числе песка), использование принципов Никола Тесла и других изобретателей.

Только индивидуальная энергетика, из расчёта на душу населения в 2 кВт, может обеспечить нормальную жизнь, снизить цены на все товары и питание, дать воду и обеспечить безопасность людей, сделав их независимыми от любых природных и других катаклизмов. Вот в какую энергетику надо вкладывать средства, а не сверлить и долбить землю и сжигать всё, что там имеется. Мир тратит на создание современной традиционной энергетики в год около $ 14 трлн. По нашим подсчётам, чтобы обеспечить каждого человека 2 кВт энергии, причём считая это дополнением к продовольственной корзине, потребуется всего $ 2-3 трлн.

Переход на ВИЭ

Дмитрий Медведев, премьер-министр РФ: «Если не создавать нормативную базу для ВИЭ, мы будем заложниками существующей углеводородной модели энергетики».

Нефтяной век в мире закончился, считает глава Сбербанка Герман Греф: «Китай, крупнейший потребитель углеводородов, быстрыми темпами осваивает альтернативные источники энергии… Китай в ближайшие годы увеличит установленную мощность электростанций, работающих на возобновляемых источниках энергии, до 560 гигаватт. Это, для сравнения, в 2,5 раза больше, чем вся установленная мощность Российской Федерации. По мнению экспертов, переход на 100 процентов используемой энергии из возобновляемых источников к 2030 году — цель более чем достижимая и для России».

ИНФО

Ещё в 2008 году президент США Барак Обама подписал меморандум, предписывающий федеральному правительству увеличить инвестиции в развитие технологий возобновляемых источников энергии в ближайшие семь лет, чтобы утроить долю ВИЭ в энергетике страны. Согласно этому документу, доля ВИЭ должна была увеличиться с текущих 7 % по меньшей мере до 10 % в 2015 году, до 15 % в 2016-2017 годах, до 17,5 % в 2018-2019 годах и до 20 % в 2020 году от общего числа ресурсов энергетики.

«Реализация проектов в области возобновляемых источников энергии (ВИЭ) в России имеет под собой серьёзные экономические основания» — такое мнение в беседе с корреспондентом ТАСС высказал Алексей Текслер, первый заместитель министра энергетики РФ, глава российской делегации на ассамблее Международного агентства по возобновляемым источникам энергии (МАВИЭ) в Абу-Даби. С развитием северных территорий и Дальнего Востока возобновляемая энергетика приобретает особое значение — во многих отдалённых регионах использование ВИЭ существенно сэкономит расходы на электроэнергию, так как не нужно завозить мазут и другие традиционные энергоносители. Уже сегодня эти решения показали свою экономическую эффективность и целесообразность. «Важным стало использование альтернативной энергетики в Крыму», — добавил замминистра.

Китай в настоящее время является мировым лидером по совокупной мощности ветроэнергетических установок. Но это пропеллерные турбины западных образцов. Авторы уверены, что китайские компании скоро будут предлагать нам же турбины российских изобретателей...





Будущее и настоящее

Невиданные ранее универсальные преобразователи энергии, основанные на трёх возобновляемых источниках — вода, воздух и солнце — в совокупности с «чудодейственной» механикой позволят в будущем полностью отказаться от всех этих атомных электростанций и ТЭЦ, плотинных ГЭС, пропеллерных ветряков-монстров и всех иных дорогих и нерациональных генераторов энергии, в том числе любых синтезов.

И хотя «энергетические первоисточники» принадлежат всем в равной мере, их не надо добывать, перерабатывать и откуда-то привозить — они везде, вокруг нас, и энергия на их основе тоже стоит дёшево: достаточно лишь приложить к ним инженерную смекалку.

Но и здесь «лихие люди», скромно называющие себя «бизнесменами», находят поводы и причины увеличивать стоимость альтернативной энергии, приближая её к ценам за ископаемое топливо и даже поднимая её ещё выше, до совсем уж неприличных величин, создавая всякие препоны для широкого её внедрения в жизнь, потому что нужно как можно быстрее и больше собрать «урожай» с выгоды от обладания ископаемыми источниками за оставшиеся каких-то 20-30 лет, а там вступает в силу старое российское «после нас хоть потоп».

Невиданные ранее универсальные преобразователи энергии, основанные на возобновляемых источниках, в совокупности с «чудодейственной» механикой позволят в будущем полностью отказаться от всех АЭС, ТЭЦ, плотинных ГЭС, пропеллерных ветряков-монстров и всех иных дорогих и нерациональных генераторов энергии, в том числе любых синтезов

Цены на ВИЭ-энергию

«Компания “Ренова” и концерн “Роснано” запустили в Башкирии первую очередь Бурибаевской солнечной электростанции. Она стала первой из семи станций, которые «Хевел» планирует построить в Башкирии в ближайшие годы. Суммарная мощность всех будущих солнечных электростанций в регионе составит 59 МВт, а объём инвестиций оценивается более чем в 6 млрд рублей», — недавнее сообщение СМИ. То есть в ценах 2014 года 1 кВт равен $ 3300. Это гораздо дороже, чем в Европе, где 1 кВт три года назад имел стоимость от $ 2500. Цена энергии от ВИЭ не должна превышать $ 800. Выходит, остальная стоимость предназначена для. догадайтесь, для чего.

Министр энергетики Российской Федерации Александр Новак представил Правительству РФ программу модернизации электроэнергетики до 2020 года. Он отметил, что объём финансирования программы запланирован на уровне 11,4 трлн рублей с учётом привлечения внешних средств в размере 3 трлн, в том числе на генерирующие мощности планируется направить 6,8 трлн, на электрические сети — 4,6 трлн рублей.

Целью программы является обновление электроэнергетики России на базе отечественного и мирового опыта, преодоление нарастающего технологического отставания, морального и физического старения основных фондов, повышение надёжности энергоснабжения. Мы считаем, что суммы в 6,8 трлн хватило бы обеспечить всю страну индивидуальными схемами собственной генерации на триаде ВИЭ (вода, воздух и солнце), причём разработками только российских изобретателей. Эти генерации обеспечили бы потребителя на долгие годы.

По словам г-на Новака, «на реализацию долгосрочной программы “Энергоэффективность и развитие энергетики” потребуется 28 трлн рублей из внебюджетных источников». Да если призвать миллион изобретателей России, дать им по миллиону рублей, то в течение одного или трёх лет можно собрать такой урожай разработок и моделей, который Западу и не снился, в том числе по энергетике, даже если из всего количества будет признано рациональными проектами только 10-20 %. Всего один триллион рублей — и вся страна может быть энергетически обеспечена на долгие годы. Особенно важно, что это и те 60 % территории страны, где нет централизованных энергоресурсов, да ещё останется 5 трлн рублей на осуществление остальных проектов.



Источники и подходы

Вода — это основной источник энергии, в любом её природном проявлении, в том числе даже стоячие или искусственные водоёмы. Она может обеспечить население энергией, причём не только любой город или страну, но и всю планету на 200 % (ГЭС с плотинами и с затоплениями территорий в расчёт не принимаются, это уже не эффективная, а скорее опасная технология).

А сколько ещё других простых, надёжных и недорогих генераций энергии предлагаются изобретателями, в том числе и молодыми энергетиками, на ВИЭ. Значит, уже сейчас можно перекрыть потребность в энергии любого потребителя, где бы он территориально не находился (хотя бы в Арктике) на 100 % и без любого вида топлива, в том числе ядерного.

Техническая основа нетрадиционной альтернативной индивидуальной энергетики в нашем понимании — это моноблок энергоисточника и потребителя без всяких надстроек и контроля. Как вы себя чувствуете в личном авто или на личной яхте, или в самолёте, или с индивидуальной телефонной связью? Правильно — абсолютно независимо. Так должно быть и с энергетикой! Энергетический индивидуальный минимум (не менее 2 кВт) должен войти в коммерческую корзину, наравне с продуктами питания и воды.

На фото 9 изображён разрабатываемый в МТК-«iзобретатель» проект гигантских колёс обозрения для городов и стран, схожий с сооружением «Глаз Дубай» (крупнейшее колесо обозрения в мире), но наша схема оригинальнее, эффективнее и экономичнее, так как не требует энергии для себя, а наоборот — является механическим реактором (генератором) электроэнергии, функционирующим в совокупности с возобновляемыми источниками, с примерной мощностью от 2000 кВт.

Подобные полезные развлекательные колеса можно ставить, например, во всех приморских городах — в Сочи на искусственном острове, в Москве, на берегу реки, у парка «Зарядье», напротив бывшей гостиницы «Россия», в будущем центре «Русь» (под Домодедово) или в будущей Нагатинской пойме и т.д.

В отечественных СМИ в 2015 году была опубликована статья о новом направлении в обеспечении потребителя энергией постоянного тока (низких напряжений) — системе «Энернет». Эта схема похожа на наше индивидуальное энергообеспечение, только мы предлагаем собственные генерации различных типов, а «Энернет» питается от централизованной системы и применяет массу приборов и устройств для понижения напряжений и экономии энергии. Наша схема использует только собственные генерации всех рациональных типов напряжения (от 9 В до 320 кВ) — потребитель сам выбирает вариант в соответствии с потребностью в энергии и применяемых и используемых приборов; кроме того, мощности энергии для индивидуального потребителя неограниченны.

Возможно, что лучше те деньги, которые собираются отдать иностранным фирмам за устаревшие типы ветряков или гектары солнечных батарей, направить на создание отечественной энергетики на ВИЭ и другие виды собственных генераций, создаваемых по проектам российских молодых изобретателей. Их можно размещать в Крыму, Кубани, на Дальнем Востоке и по кромке Северного ледовитого океана, и, конечно, в Москве, использовав высотные здания.

Как легко все журналы печатают западные статьи по энергетике, но ничего не знают или не хотят знать о российских разработках. В нашей национальной идее должно быть прописано 2 кВт мощности (собственной генерации) на каждого человека, то есть нужен «энергетический чемоданчик» как дополнение к продовольственной корзине. На Западе тоже считают, что 2 кВт мощности должны быть нормой для человека — всю энергомощность своих стран они делят на количество людей и тоже стремятся к этой цифре. Возможно, в будущем Россия и получит эти нормы энергии, задорого, от централизованных источников и от традиционных установок на ВИЭ. Но это будет не наша заслуга, это будут зарубежные изделия. Вот таков наш будущий российский «Энернет»...





Есть предложение

Предлагается на базе инновационного комплекса Сколково создать молодёжный энергетический кооператив, который разработает проект и внедрит его. Тема — обеспечение всей территории Сколково собственной энергией. Для начала (первый год) предполагается энергозамещение централизованного обеспечения до 30 %, а в следующий год оно должно составить 90-100 %, причём на триаде ВИЭ (вода, воздух, солнце), а потом и на других возможные видах индивидуальной генерации энергии. Впервые хоть какой-то из инновационных центров будет независим от рубильника централизованной системы. Более того, энергокооператив сможет по договорам помогать многим потребителям, особенно отдалённым, внедрять микроэнергетику в производства, в фермерские хозяйства и т.д. опубликовано  

 

Источник: www.c-o-k.ru/articles/absorbcionnye-bromistolitievye-teplovye-nasosy-energosberezhenie-utilizaciya-pgu-minitec-novye-resheniya

В праздничные дни электроэнергия в Германии стала бесплатной

Поделиться



По данным Bloomberg, в праздничные дни цены на электроэнергию в Германии могут стать отрицательными в течение нескольких часов или даже целых дней. Тенденция обусловлена, в первую очередь, ростом производительности ветрогенераторов. В полдень 26 декабря общая мощность выработанной ветряной энергии составила 33 ГВт — 60% от всего электричества, необходимого стране. 27 декабря этот показатель составит 33,7 ГВт. В феврале Германия установит рекорд, достигнув мощности ветроэнергетики в 33,8 ГВт. При этом одного гигаватта достаточно для обеспечения электроэнергией двух миллионов домов.





Рекордным показателями также поспособствует теплая погода — как сообщает MDA Information LLC, температура поднимется на 5 градусов Цельсия выше нормы. Кроме того, в праздники заводы временно прекращают работу, а люди уходят на каникулы, что приводит к снижению спроса на электроэнергию.

Балансировка энергосетей стала одной из первостепенных задач немецких энергетических компаний. Отрицательные цены на электричество вынуждают их прекращать работу электростанций или платить клиентам за излишки в энергосети. И в случае с крупными компаниями плата за излишки может составить солидную сумму.

Аналитики Bloomberg прогнозировали, что 25 декабря стоимость электричества в Германии составила минус 10,95 евро за МВт*ч. Похожая ситуация сложилась в Германии и в мае 2016 года. Благодаря хорошим погодным условиям 87% энергии страны поступали от возобновляемых источников. В какой-то момент цены на электричество также оказались отрицательными. Недавно стало известно, что федеральное агентство Германии по управлению электросетями препятствует увеличению мощности ветряных станций на севере страны, так как электросеть не может справиться с растущей нагрузкой.



Напомним, что к 2050 году Германия планирует полностью перейти на возобновляемые источники энергии и сократить выбросы СО2 на 95%. Одним из шагов на пути к этой цели станет запрет автомобилей с ДВС.

С 2030 года все новые автомобили в ФРГ должны обладать статусом транспортных средств с нулевыми выбросами. Также в стране собираются ввести запрет на въезд в центральные части городов дизельных и бензиновых автомобилей. опубликовано  

 

Источник: hightech.fm/2016/12/27/free_power

Впервые создана симуляция со 100% возобновляемой глобальной энергосетью

Поделиться



Впервые компьютерная симуляция смогла создать жизнеспособную глобальную энергетическую систему, работающую только за счет возобновляемой энергии солнца и ветра.

Новая модель, разработанная исследователями Технологического университета Лаппеэнранта (LUT, Финляндия) демонстрирует, как электрическая система, основанная по большей части на энергии солнца и ветра, работает во всех регионах мира. Она показывает принципиальную возможность функционирования энергосистемы, которая способна выполнять поставленные Парижским соглашением задачи, используя только возобновляемые источники энергии.





Симуляция Internet of Energy Model покрывает всю планету и разделена на 145 отдельных участков, входящих в состав 9 основных регионов.

«С помощью моделирования, каждый может убедиться в том, что электрическая система на возобновляемых источниках жизнеспособна. Впервые ученые смогли сделать это в глобальном масштабе», — говорит Кристиан Брейер, профессор LUT и один из основных авторов компьютерной модели.





Цель создания модели – поиск наиболее эффективных решений создания энергосистемы на ВИЭ. Она показывает, как максимально экономично организовать поставки электричества в зависимости от потребностей, времени дня и сезонов. Представленные в симуляции электростанции, системы хранения и транспортировки энергии обеспечивают 9 основных регионов электричеством по цене от 55 до 70 евро за МВт*ч.

Однако разработчики модели не собираются останавливаться на достигнутом, они надеются расширить ее функционал, что в конечном итоге позволит моделировать весь энергетический сектор, включая теплогенерацию и транспорт. В их планы также входит создание модели перехода от действующих энергетических систем к полностью устойчивым низкоуглеродным решениям. опубликовано  

 

Источник: ecotechnica.com.ua/energy/1651-vpervye-sozdana-simulyatsiya-so-100-vozobnovlyaemoj-globalnoj-energosetyu.html

Может ли энергия верта обеспечить человечество энергией

Поделиться



        В 2011 году общая численность энергии, произведенной всеми ветрогенераторами мира, составила 430 тераватт, что является 2,5% всей произведенной человечеством энергии. Весомая часть. Но на планете Земля находится достаточное количество энергии ветра, чтобы обеспечить все человеческие потребности. Что будет, если мы сможем «подключить» весь доступный ветер?

        Энергия ветра, или ветроэнергетика, это отрасль энергетики, которая преобразует энергию воздушных масс в электрическую, механическую или любую другую необходимую энергию. Эта энергия является возобновляемой и в отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична.





        Используя модель для подсчета потенциала ветровой энергии, исследователи из научного института Карнеги (Carnegie Institution for Science) и Ливерморской лаборатории имени Лоуренса (Lawrence Livermore National Laboratory), опубликовали свои результаты в журнале «Природные Изменения Климата» (Nature Climate Change).

        По словам Кейт Марвел, одного из соавторов исследования с Кейн Калдейра и Бен Кравитз, вокруг нас достаточно энергии, как на поверхности Земли, так и в атмосфере, чтобы обеспечить энергией всю планету в 100 раз больше при текущей норме. В настоящее время, человеческая цивилизация использует примерно 18 тераватт энергии. Согласно озвученной модели ветровые турбины могут произвести около 400 тераватт ветровой энергии из нижних слоев атмосферы и около 1800 тераватт из верхнего слоя атмосферы. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

        Правда, скорее всего, человечество столкнется и с ограничением количества вырабатываемой таким образом энергии. Ветровые турбины работают способом создания сопротивления или его замедления, снижая силу ветра. Если установить слишком большое количество турбин, то ветер значительно замедлится. Более того, такие изменения в глобальной циркуляции ветра могут негативно влиять на климат (предыдущее изучение подобной модели выявило риск глобального изменения распределения осадков при крупномасштабном «сборе» ветровой энергии).





        Тем не менее, как утверждают ученые, ни одна проблема изменений климата не будет нам угрожать еще очень долгое, долгое время. Человечество может экологически безопасно получать ветровую энергию до 2000 тераватт прежде чем столкнуться с физическими пределами. Это цифра в 100 раз больше, чем планета потребляет в текущий момент.

        Следующим шагом исследования для ученых будет корректировка анализа технической возможности ландшафта для месторасположения ветровых турбин. Но на данный момент можно с уверенностью сказать, что при наличии такой богатой возможности обеспечения человечества количеством энергией в разы превышающим текущие потребности, все-таки решение для развития данной области будет определяться политическими, экономическими и техническими ограничениями, а не территориальными границами.

Источник: /users/104

Российская ветроэнергетика в сравнении в ветроэнергетикой других стран

Поделиться



У России есть обширные возможности для того, чтобы развивать возобновляемую энергетику. Однако несмотря на это, на сегодняшний день она, если доверять статистике, занимает только 64 место в мире по объему общей электрической мощности ветропарков. Говоря иначе, в России налицо почти полное отсутствие интереса к потенциалу данной сферы энергетики.

Согласно разным источникам суммарная мощность ветроэлектростанций в России составляет не более 16-17 МВт электроэнергии. При этом согласно данным Bloomberg в Китае мощность всех ветроэлектростанций составляет около 76 ГВт. А это значит, что российская ветроэнергетика производит за год примерно столько же энергии, сколько китайская ветроэнергетика может выдать за 2 часа.

Ветропарк в китайской провинции Хейбей
Специалисты утверждают, что главная проблема развития альтернативной энергетики в России состоит в том, что подобные проекты нуждаются в значительных финансовых влияниях, хотя проведение, скажем, Олимпийских игр в Сочи, доказывает тот факт, что для реализации больших энергетических вливаний хватает возможностей, необходимо только желание. Согласно информации из интернета, если учитывать расходы на приобретение, монтаж и применение соответствующего оборудования в Российской Федерации, себестоимость 1 кВт/ч «ветряного» электричества составит от 6 до 18 рублей. При этом так называемая традиционная энергетика продает 1 кВт/ч за 2-4 рублей. Казалось бы, это показывает, что ветроэнергетика не является выгодным делом. Но при этом стоит сделать пару поправок. Во-первых, газ, нефть и другие ископаемые источники энергии рано или поздно закончатся. Во-вторых, благодаря стремительному развитию данной области энергетики и техническому прогрессу себестоимость вырабатываемой энергии продолжает ощутимо снижаться.
Российский обыватель в массе своей полагает, что ветры дуют только на океанских берегах, однако согласно данным отчета 2011 года от группы экспертов из компании AnalyticResearchGroup, Россия обладает наибольшим ветропотенциалом в мире. Технический потенциал ветряных электростанций РФ оценивается в 2 469,4 млрд. кВтч в год, а общие ресурсы в данной отрасли определяются в 10,7 ГВт. Наибольшие ветровые энергетические зоны в России располагаются как правило на островах и побережье Северного Ледовитого океана от Камчатки до Кольского полуострова; в районах Дона, Средней и Нижней и Волги; на побережье Азовского, Черного, Балтийского, Баренцева, Охотского и Каспийского морей; на Алтае, в Карелии, на Байкале, в Туве.
На текущий момент на 70% территории Российской Федерации бензиновые или дизельные электростанции являются чуть ли не единственными источниками энергии. К примеру, на Крайнем Севере, где живет более 10 миллионов человек, каждый год расходуется 6-8 миллионов тонн топлива. При этом себестоимость вырабатываемой электрической энергии составляет от 10 до 12 руб. за кВт/час. Согласно оценкам экспертов, Применение ветродизельных установок в данном регионе позволит сократить расход топлива в два-три раза, что снизит цену электроэнергии.

Ветропарк на британском побережье

В отдаленных регионах страны ветроэлектростанции наиболее перспективны, ведь люди живут там вдали от ЛЭП, и цены на топливо многократно увеличиваются из-за транспортировки энергетических ресурсов. К примеру, органы управления в некоторых удаленных регионах Восточной Сибири тратят на топливо более половины бюджета населенного пункта.
На сегодняшний день Россия производит примерно 16 МВт ветряной энергии. Самая большая ветроэлектростанция располагается в районе поселка Куликово (Зеленоградского район Калининградской области), также большие электростанции находятся на Чукотке, в Коми, Калмыкии и Башкортостане. На северо-западе, востоке и юге страны существуют пригодные для строительства ветроэлектростанций площадки мощностью около 2500 МВт, а также площадки, ожидающие проектных работ по вводу мощностей более 3000 МВт. При этом на долю ветровой энергетики в Российской Федерации сейчас отводится 0,5-0,8% в общем энергетическом балансе страны. Это крайне мало, поэтому оптимизм внушает тот факт, что 23 мая 2013 года на заседании Правительства получили одобрение нормативные акты, стимулирующие применение возобновляемых источников энергии и локализующих производство оборудования для такой генерации на территории страны.

Ферма ветроэлектростанций в Шотландии
Также правительство одобрило проект постановления, который определяет ценовые параметры торговли мощностью объектов генерации на основе ВИЭ, а также проект изменений, который касается установления требований по локализации для объектов такой генерации. Был принят и проект дополнений по целевым показателям установленной мощности по видам и годам и ВИЭ целью заключения долгосрочных договоров о предоставлении мощности и определения предельных капитальных затрат для проведения конкурсного отбора инвестиционных проектов. Специалисты надеются, что данные проекты благотворно скажутся на развитии отрасли, увеличат мощность энергетического парка ВИЭ и привлекут новые инвестиции.
Стоит отметить, что развитие ветровой энергетики было также обозначено в числе основных задач в рамках госпрограммы «Энергоэффективность и развитие энергетики», которая определяет ввод 6,2 ГВт генерации на основе ВИЭ до 2020 года. Ожидается, что это позволит увеличить долю такой генерации в текущем энергетическом балансе с 0,8% до 2,5%. Согласно планам полномочия по контролю за локализацией производства оборудования для ВИЭ в Российской Федерации будут даны Министерству торговли и промышленности. Премьер-министр Дмитрий Медведев ранее отметил, что если в России не будет создана нормативная база для стимулирования ВИЭ, страна станет заложником существующей ныне углеводородной модели энергетики.
Директор Российской ассоциации солнечной энергетики Антон Усачев считает, что принятие нормативно-правовых актов для ветроэнергетики даст возможность привлечь миллиарды инвестиций в возобновляемую энергетику в целом и в солнечную энергетику, у которой в России также огромный потенциал, в частности. В качестве примера он сообщает, что в регионах Южного федерального округа удельная выработка солнечных электростанций составляет свыше 1336,34 кВт/ч/кВт, а это соответствует показателям итальянских установок.

Турбина серийного производства мощностью 5 МВт
В то же время в Европе развитие ветровой энергетики идет стремительными темпами. К примеру, в Испании на острове Гран Канария планируется запуск ветровой турбины высотой 154 метра с лопастями длинной 62,5 метра. До конца 2014 года эксперты планируют ввести ветровую электростанцию в эксплуатацию на полную мощность, после чего она будет снабжать электричеством 11 000 жителей острова. При этом мощность станции составит ориентировочно 11,5 МВт, тогда как пиковое потребление энергии островитянами составляет не более 8 МВт.
Также показателен пример развития альтернативной энергетики в Германии. Четверть века назад фермеры земель Шлезвиг-Гольштейна начали установку первых ветряков. За эти 25 лет первопроходцы в этом направлении достигли поразительных результатов — возобновляемая энергетика стала важнейшим сектором экономики этой провинции с населением всего 3 миллиона человек.
На текущий период этот регион покрывает большую часть потребности в электричестве за счет альтернативных источников энергии. При этом 70% такой энергии берется из ветрогенераторов, еще 20% из биомассы, а 10% дают солнечные батареи. Земельное правительство, которое состоит из социалистов и «зеленых», планирует развивать это направление и дальше. В земле Шлезвиг-Гольштейн впервые появилось специальное министерство альтернативной энергетики, которое в том числе отвечает также за окружающую среду и сельское хозяйство. Около 70 процентов населения данной федеральной земли одобряет постройку новых ветропарков.
Уже к 2015 году Шлезвиг-Гольштейн планирует полный переход на возобновляемые источники энергии. К 2020 году ожидается рост объема производимой энергии с 3700 до 9000 мегаватт. А этого хватит уже не только Шлезвиг-Гольштейну, но и соседним регионам, к примеру электроэнергию можно будет реализовывать в Гамбург.
Очевидно, что мировая ветроэнергетика на сегодняшний день является основным направлением стратегии развития возобновляемых источников энергии, которые должны рано или поздно заменить традиционные углеводороды.

Источник: alternativenergy.ru

Новый рекорд высотной ветроэнергетики — 300 метров над Аляской

Поделиться



    




Классические ветровые турбины, которые смонтированы на суше и установлены на вершине высоких мачт, являются, пожалуй самым узнаваемым видом устройств для сбора энергии ветра, а ветровые электростанции уже давно признаны жизнеспособным методом производства чистой возобновляемой энергии. Однако, ветряные турбины установленные на мачтах или башнях, в действительности обладают рядом ограничений, поскольку ветер ближе к поверхности земли зачастую может постоянно менять свое направление и скорость, что влияет на выходную мощность турбин.

В то время, как наземные ветровые турбины остаются практичным способом для генерации чистой электроэнергии, будущее дешевой ветровой энергии в отдаленных районах может быть найдено в высотных ветровых турбинах, которые развернуты высоко над землей, где они могут работать от более сильных и постоянных ветров.

Ранее мы делали обзор прототипа надувной высотной ветротурбины компании Altaeros Energies, которая, как утверждалось, будет в состоянии производить в два раза больше электроэнергии при вдвое меньшей стоимости, по сравнению с ветровыми турбинами, установленными на обычных высотах. Компания недавно объявила о своих планах по развертыванию производства нового поколения устройства, которое способно работать на высоте 1000 футов (чуть более 300 метров).

Новая версия их высотной турбины называется Buoyant Airborne Turbine (BAT), и после развертывания, спустя 18 месяцев работы демонстрационного проекта, эта турбина, как ожидается, побьет мировой рекорд среди высотных турбин, отодвинув на второй план модель Vestas V164-8.0 МВт, которая установлена в датском Национальном центре тестирования больших ветровых турбин в городе Остерилд.

“Компания Altaeros разработала новейшую высотную турбину для генерации постоянной энергии, с низкой себестоимостью для отдаленных от основных энергосетей частей земли — в том числе островных государств или поселений, компаний по добычи нефти, газа и других полезных ископаемых, для сельских хозяйств, и телекоммуникационных компаний, организаций, справляющихся с последствиями стихийных бедствий и для военных баз. Новые высотные турбины Altaeros используют надувные оболочки, наполненные гелием, для того, чтобы поднять устройство на большую высоту, где ветра одновременно и более сильные и более постоянные, чем те ветра, которые доступны традиционным ветровым турбинам. Высокопрочные тросы удерживают турбину в воздухе и передают выработанную электроэнергию на землю.” — сообщается на сайте Altaeros.

Исходя из того, что высотные ветровые турбины можно транспортировать и вводить в эксплуатацию без использования специальных кранов или вышек, без строительства подземного фундамента, такое решение может стать отличным рентабельным вариантом для удовлетворения энергетических потребностей отдаленных населенных пунктов или в качестве способа выработки электроэнергии во время стихийных бедствий.

Проект, частично финансируемый за счет Управления Аляски по энергетике, станет первым долгосрочным проектом первичного тестирования ветряных турбин на большой высоте. Планируется, что после успешного испытания, такие турбины будут развернуты на юге города Фэрбанкс в американском штате Аляска.

Источник: aenergy.ru

В Туркмении создан Институт солнечной энергии

Поделиться



Несмотря на то, что у Туркмении, как у обладателя четвертого по счету запаса природного газа в мире, нет проблем с природными источниками энергии, правительство страны заявило о производстве кремниевых полупроводников и гелиокомплексов как о приоритетных задачах науки и промышленности. Для этого на базе Академии наук было решено создать отдельный Институт солнечной энергии.





Как отмечается в подписанном президентом указе, данный институт должен служить как для изучения возможного потенциала, которым обладают возобновляемые источники энергии, так и для будущего внедрения в практическую плоскость инновационных научных разработок.

 

В Академии наук Туркмении подчеркивают: так как гелиокомплексы и кремниевые полупроводники активно завоевывают рынок, то в стране просто необходимо создать структуру, которая бы подробно занялась данным вопросом, чтобы исключить отставание в отрасли.

Это означает, что в Туркмении в скором времени может появиться «солнечный энергосбыт». Ведь в стране для этого есть все предпосылки. Продолжительность светового дня в середине лета в регионе составляет 16 часов, а за год солнечных часов набегает до трех тысяч.

Туркменские ученые подсчитали, что энергия солнечных лучей, которые падают на 1 м.кв., составляет 800 Вт. Поэтому ее вполне хватит, чтобы создать сеть солнечных электростанций, которые обеспечивали бы организацию жизненных условий в ряде районов.

К приоритетным потребителям относятся специалисты, которые осваивают Каракумы: геологи, сотрудники метеостанций, чабаны и т.д. Чистая неиссякаемая энергия солнца позволит получать электрическую энергию и обеспечивать водой сотни людей. Также будут созданы современные опреснительные установки и ветросолнечные комплексы для нужд местного животноводства.

Кроме того в планах ученых значится исследование, направленное на получение из кварцевого и каракумского песка технического кремния. Если эксперимент с природным песком удастся, это позволит существенно снизить себестоимость производства солнечных батарей.

Некоторые образцы кремниевых полупроводников ученым уже удалось получить из местного каракумского песка. Поэтому данное направление специалистами считается довольно перспективным. Не исключено, что данный вид солнечных батарей в силу их уникальности будет пользоваться большим спросом в других государствах.





Однако институт будет заниматься не только солнечной, но и другими видами возобновляемой энергии. В частности, будут создаваться новые проекты ветроэнергетических установок, так как среднегодовая скорость ветра в Туркмении вполне позволяет использовать ветер как один из постоянных источников энергии. К примеру, экспериментальная ветроэнергетическая установка мощность 5 кВт уже создана и успешно работает, обеспечивая электроэнергией целую школу.

Источник: zeleneet.com

Что такое ветряные электростанции

Поделиться



Ветроэнергетика (англ. wind power) является одним из «подразделений» альтернативной энергетики, подразумевающим разработку средств, а также способов, направленных на превращение ветровой энергии в электро-, тепло-, либо механическую энергию.

Достоинства у ветроэнергетики те же, что и у всех остальных отраслей альтернативной энергетики. К ним относятся небольшие затраты на содержание специальных приспособлений, возобновляемость, экологичность. Что касается минусов, к ним можно отнести, к примеру, шум. Ветроустановку и жилой дом должно разделять не менее, чем триста метров. Что касается внешнего вида устройств, здесь все субъективно, да и несовершенство дизайна легко исправимо. На данный момент за надлежащее оформление в большинстве крупных компаний отвечают профессиональные дизайнеры.

Нельзя причислить к таким уж большим недостаткам и занятие значительной площади, поскольку фундамент ветряка, как правило, полностью прячется под землей. Таким образом, использовать землю в посадочных целях можно до основания конструкции.

Энергия ветра «изымается» у природы при помощи ветроэнергетических установок. Вертикально-осевые и горизонтально-осевые двигатели – это 2 основных конструкции ветрогенераторов. Их коэффициент полезного действия примерно одинаковый, но большей популярностью пользуются горизонтально-осевые установки. Диапазон возможных мощностей ветрогенератора обширен – он варьируется от сотен Вт до нескольких МВт.

Ветряная электростанция представляет собой 2 (или больше) ветроэлектрические установки, которые превращают ветровую энергию в электроэнергию, позднее поставляемую потребителям.

Ветроагрегатом называется система, в «состав» которой входят ветродвигатель, а также машины, и системы, заставляющие эти машины (компрессор, насос и др.) работать.

Гибридная ветроэнергетическая установка – это ветроэнергетическая установка плюс другой поставщик энергии (солнечные, фотоэлектрические коллекторы, газотурбинный двигатель, двигатель, работающий за счет бензина либо дизельного топлива, установки водородного, емкостного накопления сжатого воздуха и др.), которые служат дополнительным либо запасным источником электричества, поставляемого пользователям.

Ветропарком называют комплекс установок, «добывающих» электричество из ветра. Во многих случаях они размещаются рядами, установленными перпендикулярно по отношению к основному направлению ветра. Разрабатывая подобный проект, специалисты обязательно принимают во внимание наличие дороги, по которой можно пробраться к установкам, системе, осуществляющей контроль и мониторинг, подстанции.

Ветряные электростанции на мировом рынке

Альтернативная энергетика, а вместе с ней и ветроэнергетика, могут похвастаться своим бурным развитием. В числе основных причин этого – актуальные на данный момент проблемы энергетической безопасности, увеличение стоимости нефти, сознательность многих людей, которых беспокоит изменение климата на планете.

Средний показатель используемой электрической энергии, получаемой благодаря ветряным электростанциям, составляет 1,5 процента. В государствах, в которых использование подобных устройств всячески поддерживается правительством, доля ветровой энергетики на порядок выше. Так, ветровая электроэнергия от общего количества энергии в Германии составляет 8 процентов, в Испании – десять процентов, а жители Дании используют аж 20 процентов ветрового электричества.

Свыше 50% мировых ветряных мощностей на данный момент находится на территории Европы. Быстрее остальных ветряными электростанциями обзаводятся азиаты, североамериканцы, европейцы.

Согласно сценариям развития данной отрасли альтернативной энергетики, которые были составлены учеными, в 2030 г. от общего количества добываемой электрической энергии доля ветровой может составить пять процентов, а в 2050 – 6,6 процентов. Это при условии отсутствия рыночных стимулов и поддержки государств. Если же правительства будут всячески способствовать появлению большего количества ветряных электростанций, эти показатели будут составлять 15,6 и 17,7 процентов соответственно. А при условии глобальных энергосберегающих мероприятий 2030 и 2050 ознаменуются такими цифрами, как 29,1 и 34,2 процента.

Данная аналитика свидетельствует о том, что ветроэнергетика может занять более крепкие позиции в системе снабжения электрической энергии при условии проведения глобальных энергосберегающих мероприятий.

К примеру, канадское правительство поставило перед собой цель увеличить производство ветроэлектроэнергии к 2015 г. на пятнадцать процентов. В планах ЕС – в 2020 г. достичь цифры в 180000 МВт. А национальный план развития Поднебесной содержит данные, согласно которым этот показатель к 2020 г. должен составить 30000 МВт.

Несмотря на то, что многие государства во всем мире активно интересуются альтернативной энергетикой, РФ, наоборот, добывает и поставляет в другие страны все большее количество традиционного топлива. Лидерами в российской топливно-энергетическом балансе являются нефть (18,9 процентов) и газ (53 процента). Твердое топливо занимает 18 процентов от общего количества потребляемой энергии.

При помощи альтернативных источников энергии РФ за год получает не больше восьми с половиной миллиардов кВтч электроэнергии. При этом не учитываются гидроэлектростанции, мощность которых превышает двадцать пять МВт. По отношению к общему объему это меньше, чем один процент.

За некоторое время до того, как случился финансовый кризис, россияне начали создавать нормативно-правовую базу, касающуюся развития ветроэнергетического рынка. Так, в 2007 г. были приняты поправки к Федзакону «Об электроэнергетике», которые стали основой для развития данной отрасли. Благодаря этому начали формироваться институциональные условия существования рынка, отрасль стала более привлекательной в плане инвестиций.

Как выглядит российский рынок альтернативной энергетики

Одним из основных направлений госполитики в области увеличения энергоэффективности стало развитие получения электроэнергии благодаря:

— Установкам, «добывающим» энергию из солнечного света;

— установкам, «добывающим» энергию благодаря ветру;

— малым ГЭС, мощность которых составляет 25 МВт;

— установкам, использующим геотермальную энергию подземных источников тепла;

— установкам, использующим биогаз, биомассу;

— установкам, использующим низкопотенциальную теплоэнергию воды (в т. ч. и сточные воды), воздуха, земли.

Чтобы достичь объема использования устройств, добывающих энергию из ветра, до 2020 г. будут введены генерирующие приспособления (тепловые электрические станции, функционирующие за счет биомассы, геотермальные, приливные, ветроэлектростанции, малые гидроэлектростанции и др.), общая мощность которых должна составить 25 ГВт.

Как результат, ветряные электростанции в 2020 г. должны будут равняться ~ восьмидесяти миллиардам кВтч.

Для России очень важно развитие ветровой энергетики, поскольку семьдесят процентов земель государства с десятью процентами населения располагаются в областях децентрализованного снабжения электрической энергией. При этом данные области являются потенциально благоприятными для выработки электричества благодаря ветру (Таймыр, Якутия, Чукотка, Камчатка, Бурятия, Сахалин, Магаданская обл. и др.).

Новые мощности, позволяющие «добывать» энергию из ветра, появляются в РФ довольно медленно. Так, например, в 2005 году данный показатель составлял 14 МВт, в 2006 – 15,5 МВт, в 2007 – 16,5 МВт. Средняя скорость прироста равняется восьми процентам в год. Цифра не очень привлекательна по сравнению, к примеру, с Испанией с ее 20-ю процентами, США с 30-ю процентами, КНР с 60 процентами.

На данный момент на территории РФ располагается десять больших ветряных электростанций. Их доля составляет ~ 90 процентов от общей мощности. Также работает чуть больше, чем полторы тысячи малых ветровых установок, диапазон мощности которых составляет 0,1 – 30 кВт.

Подавляющее число установок было установлено в 2003-2004 г. Тогда как в последнее время мощности растут, как правило, благодаря появлению маломощных одиночных энергетических систем. Прирост равняется 250 ветровым установкам, мощность которых равняется 1-5 кВт.

Ветроэнергетическая география

На ветроэнергетическом рынке работает более, чем полсотни участников, 50% из них являются производителями. Подавляющее большинство производит продукцию, используя свои разработки, а > 1% выпускает устройства за счет трансферта иностранных технологий.

Госпланы предполагают стремительные темпы дальнейшего развития ветровой энергетики и ставят перед собой довольно сложные, с учетом теперешних темпов развития, цели.

Источник: zeleneet.com

Во Франции будут построены ветровые турбины с «незаметными» лопастями

Поделиться



Недавно французская энергетическая компания EDF Energies Nouvelles объявила о планах строительства на территории уже работающего ветро-парка в Перпиньяне дополнительных ветровых турбин, оснащенных стелс-технологией. Эта технология была разработана для уменьшения помех, создаваемых ветровыми турбинами в радиолокационных системах самолетов.

Одной из самых распространенных причин блокировки проектов по строительству ветроэлектростанций во Франции является обнаружение крутящихся лопастей радарами самолетов, когда операторы не могут точно различить роторы низко летающих самолетов и современных ветровых турбин. Для решения этой проблемы датская компания Vestas, крупнейший производитель на рынке ветроэнергетики, решила разработать такие ветровые турбины, которые были бы невидимы для радаров.

В настоящее время проектировщики авиалайнеров используют два типа технологии для того, чтобы скрыть самолеты от радара. Первая технология заключается в использовании специального покрытия на внешней поверхности фюзеляжа, которое преобразует сигналы радара в тепло, не обнаруживаемое радиолокационными станциями. Второй подход включает в себя построение корпуса авиалайнера таким образом, чтобы сигналы радара отражались далеко от радиолокационных станций. Инженеры Vestas решили использовать первую технологию, разработав специальное покрытие для лопастей, которое маскирует их от радиолокационных систем.

Новые лопасти с радиолокационным уклонением уже были протестированы на ветроэлектростанции в Овернье, Франция. Как показали результаты испытаний, новая технология от Vestas работает в соответствии с заявленными характеристиками, что является основой для ее развертывания в большем масштабе. Ветропарк в Овернье, названный Ensemble Eolien Catalan и имеющий мощность 96 МВт, стал не только одним из самых крупных проектов ветроэнергетики во Франции, но и самой первой ветроэлектростанцией с минимальными радиолокационными помехами.

После успешной реализации следующего проекта в Перпиньяне, компания Vestas намерена искать новых клиентов, в том числе в США и Великобритании.

Источник: www.cheburek.net