В Великобритании планируют установить ветряки на фонарные столбы

Поделиться



Британские компании NVT Group и Own Energy разработали план по оснащению фонарных столбов небольшими ветряными установками.





В Великобритании 10 млн фонарных столбов, на 2 млн как минимум можно установить ветряки. Лишнее электричество поступит в энергосистему страны. Первоначально компании намерены создать 25 рабочих мест, за три года довести число работников до 300 человек.

Оборот предприятия за пять лет должен достичь 400 млн фунтов стерлингов, рассчитывают бизнесмены. Кроме того, они надеются на экспортный потенциал — идеей уже заинтересовались в США, Канаде, Мексике, Ирландии и ЮАР. Own Energy находится в Шотландии.





Местные политики с оптимизмом восприняли энергетический проект, ведь пополнится бюджет и появятся новые рабочие места. Кроме того, энергетическая независимость, пусть и частичная, важна для региона, где звучат голоса о политической независимости от Лондона. Пронедра ранее сообщали, что на отмели в Северном море построят искусственный остров, а вокруг — ветропарк. опубликовано  

 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: www.energy-fresh.ru/news/?id=14165

Ветряк своими руками или как получить свет с помощью ветра

Поделиться



Принцип работы ветрогенераторов

Принцип работы во всех модификациях ветряков одинаков. В процессе вращения лопастей образуется три вида физического воздействия: подъемная, импульсная и тормозящая силы. В результате воздействия этих сил статор приходит в движение, а ротор на неподвижной части генератора начинает создавать магнитное поле и электрический ток движется по проводам.

Вариантов исполнения ветрогенераторов большое количество, отличаются они не только мощностью, но и своим внешним видом. Структура большинства ветряков включает в себя: генератор, лопасти, инвертор, мультипликатор. Инвертор используется для преобразования полученного заряда в постоянный ток. Мультипликатор — это редуктор, который предназначен для увеличения числа оборотов вала. Устанавливают редукторы не на все ветряки, в основном только на большие и мощные ветровые установки.





 

Трехфазный переменный ток образуется благодаря вращению ротора. Полученная энергия направляется через контроллер к аккумуляторной батарее. Далее инвертор преобразовывает ток и делает его стабильным, именно в таком виде его можно подавать для питания бытовых приборов или освещения.

 

Как самостоятельно изготовить ветрогенератор вертикального типа

Изготовить ветряк можно самостоятельно в домашних условиях. Для начала нужно определиться с видом ветрогенератора. В зависимости от своей конструкции ветроустановки бывают:

  • с вертикальной осью вращения: ротор Дарье, ветрогенератор Савониуса;
  • с горизонтальной осью вращения: параллельной или перпендикулярной потоку ветра.
Некоторые модели ветряков совмещают в себе несколько типов установок. Рассмотрим пример создания гибридного ветряка, который совмещает в себе конструкцию ветровых генераторов типа Савониуса и Дарье.

 

Собираем ротор

Чтобы собрать ротор, необходимо приобрести:

  • 6 неодимовых магнитов D30хH10 мм;
  • 6 ферритовых кольцевых магнитов D72xd32xh15 мм;
  • 2 металлических диска D230хH5 мм;
  • эпоксидная смола или клей.




Вместо металлических дисков можно использовать пильные диски подходящего размера. На одном диске размещают 6 неодимовых магнитов, чередуя их полярность, угол между ними должен быть 60 градусов на диаметре 165 мм.





 

На втором диске по такому же принципу располагают ферритовые кольцевые магниты.





 

Чтобы магниты не сдвинулись во время работы ветряка, их нужно хотя бы до половины залить эпоксидным клеем.

 

Изготавливаем статор

Сначала необходимо намотать 9 катушек по 60 витков, для этого используют эмалированный медный провод диаметром 1 мм.

Далее катушки спаивают между собой: начало первой катушки с концом четвертой, четвертая с седьмой. Вторая фаза точно так же соединяется через две катушки, только спаивать начинают со второй катушки. Соединение третьей фазы начинается с третьей катушки.





 

Из фанеры изготавливается форма, в нее укладывают пергаментную бумагу, сверху которой кладут кусок стекловолокна и катушки.





 

Все это заливается эпоксидной смолой. Через 24 часа из формы извлекается готовый статор.





 

 

Сборка генератора

Все части генератора готовы, осталось их только собрать.

Сам генератор будет крепиться к кронштейну с хабом с помощью шпилек. Детальнее рассмотрим процесс сборки.

Этапы сборки генератора:

  • в верхнем роторе проделывается 4 отверстия с резьбой под шпильки. Они необходимы для того, чтобы ротор плавно «садился» на свое посадочное место;
  • в статоре проделывается 4 отверстия под крепление кронштейна;
  • на кронштейн укладывается нижний ротор магнитами вверх, в нем также просверливается 4 отверстия под резьбу для шпильки;
  • на нижний ротор кладут статор;
  • сверху укладывают второй ротор магнитами вниз. Все это фиксируется между собой и кронштейном с хабом шпильками и гайками.
Хаб (фланец с подшипниками) нужно приобрести отдельно: нижняя часть хаба должна быть диаметром под 1,5 дюймовую трубу.

Очередность крепления всех деталей более детально представлены на схеме ниже:



1 — соединительный элемент; 2 — опора лопастей; 3 — верхняя часть ротора; 4 — магнит; 5 — втулка; 6 — статор; 7 — нижняя часть ротора; 8 — гайка; 9 — шпилька; 10 — хаб; 11 — ось; 12 — кронштейн для крепления статора

 

Изготавливаем лопасти

Лопасти можно изготовить из дерева, стеклоткани и других материалов. Быстрее и легче эту часть ветрогенератора смастерить из канализационной ПВХ трубы. Лучше использовать трубы оранжевого цвета, так как они обладают хорошей плотностью и не боятся попадания прямых солнечных лучей.

Для вертикального ветрогенератора понадобится 4 лопасти из ПВХ трубы и 2 ортогональные (изогнутые) лопасти из оцинкованной жести. Такая конструкция позволит вращаться ветряку даже в условиях слабого ветра со скоростью 2–3 м в секунду. Берем метровые отрезки ПВХ трубы и разрезаем их вдоль на 2 равные части. Из жести вырезаем полукруги по размерам будущей лопасти и крепим их с помощью болтов по краям трубы.

Чтобы изготовить ортогональные лопасти, вам понадобится стандартный оцинкованный лист стали толщиной 0,75 мм. Сначала ножницами по металлу вырезается два отрезка размером 1х0,4 м и четыре отрезка в виде капельки. Потом отрезки стали нужно согнуть и по краям прикрепить отрезки «капельки».

Крепят лопасти по кругу на каркас, его можно сварить из профильной квадратной трубы 20х20 и уголков 25х25. Размеры каркаса и расстояние между лопастями можно увидеть на схеме ниже:





 

 

Сборка конструкции ветрогенератора

Из водопроводных труб различного диаметра сваривается мачта, высота ее зависит от местности, где будет располагаться ветрогенератор, и условий его эксплуатации, но в любом случае он должен быть выше крыши дома.





 

Заранее под секционную мачту нужно подготовить трехточечный армированный фундамент. К готовой мачте на земле прикручивается генератор. Далее к генератору прикрепляется болтами каркас с лопастями. Мачта с ветряком крепится к фундаменту с помощью двух шарнирных опор и посредством лебедки поднимается в вертикальное положение. После подъема мачты третья опора с помощью болта прикручивается к основанию ветряка. Дополнительно мачту нужно зафиксировать с помощью растяжки.

 

Электрическая часть

Ветряк будет выдавать 3-х фазный переменный ток. С помощью мостового выпрямителя, состоящего из 6 диодов, преобразовываем его в постоянный ток.





 

Это дает возможность заряжать аккумулятор на 12 В. Для контроля зарядки аккумулятора и предотвращения его перезарядки используют стандартное реле зарядки автомобиля РР-380.

К аккумулятору подключают инвертор, который позволяет преобразовать полученные 12 В постоянного тока в 220 В переменного частотой 50 Гц.





 

 

Результат работы ветряка: расчет эффективности

Тестовые испытания ветрогенератора при разной скорости ветра показали следующие результаты:

  • при скорости ветра 5 м/с получаем 60 об/мин — 7 В и 2,3 А = 16 Вт;
  • при скорости ветра 10,6 м/с получаем около 120 об/мин — 13 В и 3,4 А = 44 Вт;
  • при скорости 15,3 м/с примерно 180 об/мин — 15 В и 5,1 А = 76,5 Вт;
  • при скорости ветра 18 м/с получаем 240 об/мин — 18 В и 9 А = 162 Вт.
В основном ветряк выдает 16–45 Вт, так как ветер более 15 м/с бывает редко. Однако, если поставить скоростной винт, тогда можно получить более высокие результаты. опубликовано  

 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: www.rmnt.ru/story/electrical/937236.htm

 Революционный ветрогенератор копирует движения колибри

Поделиться



Стартап из Туниса Tyer Wind разработал инновационный конвертер ветровой энергии, который способен открыть новые перспективы в области механики и энергетики. Это достижение стало возможным благодаря биомимикрии – инженерной науки, которая заимствует у природы опробованные тысячелетиями технологии.

Как отмечают авторы разработки, работа революционной ветровой турбины основана на имитации движения крыльев «одной из самых энергоэффективных птиц» – колибри. Создать ее получилось после тщательного и глубокого наблюдения «прототипа» в естественных условиях.





Вместо традиционных лопастей ветряк Tyer Wind получил два крыла из углеродного волокна, форма которых соответствует природному аналогу. Проследить за движением крыльев колибри и изготовить на основе наблюдений рабочую модель удалось за счет технологии 3D Aouinian kinematics.





Сейчас у стартапа готов предсерийный прототип ветрогенератора Machine TW2 Himilce мощностью 1 кВт. Турбину оснастили двумя «лопастями», каждая длиной 1,6 м. Минимальная скорость ветра при которой машина способна генерировать электроэнергию – 3,8 м/с. С более подробными техническими характеристиками можно ознакомится из этого документа.

Хассин Лабайед (Hassine Labaied), партнер и соучредитель Tyer Wind говорит, что это первый случай, когда механическое устройство успешно имитирует движение миниатюрной птицы. На видео показана экспериментальная установка, которая сейчас тестируется в Тунисе.





Что касается показателей энергоэффективности уникальной ветряной установки, авторы проекта отмечают, что пока сделаны только предварительные тесты, но и на их основании уже можно говорить о достаточно неплохом КПД.

Проект Tyer Wind является частной инициативой, которая не поддерживается никакими государственными научно-исследовательскими институтами и государственными компаниями. Он реализуется при финансовой поддержке 2-х известных бизнес-ангелов из Пакистана и Алжира. опубликовано  





Источник: ecotechnica.com.ua/energy/veter/1986-revolyutsionnyj-vetrogenerator-kopiruet-dvizheniya-kolibri-video.html

Футуристичные башни на Карибах

Поделиться



В 2020 году в Доминиканской республике планируют построить футуристичный жилой комплекс EXOSPHERE, который будет самостоятельно обеспечивать себя электричеством. Здание, разработанное бюро Richard’s Architecture + Design (RA+D), сможет получать энергию от солнца, ветра и геотермальных установок. 


Основную часть энергии EXOSPHERE будет получать от ветра. Комплекс из двух башен оборудуют четырьмя ветрогенераторами. Архитекторы из RA+D планируют расположить турбины таким образом, чтобы скорость ветра приходилась на них равномерно. Также строение использует солнечную энергию — для этого остекленные фасады строения покроют солнечными панелями. Крышу используют для обеспечения энергоэффективности. На ней расположится термообогревающая система на солнечной энергии и геотермальные системы отопления и охлаждения.





RA+D планируют внедрить экологичные системы не только снаружи, но и внутри помещений. Здания оснастят энергоэффективным светодиодным освещением и бытовыми приборами, а также ковровым покрытием, окрашенным эко-краской на основе кукурузы и сои. Башни смогут проводить сбор и очистку дождевой воды и сточных вод, а умные системы потребления воды позволят сэкономить ресурсы.





Здание не только самостоятельно обеспечит себя электроэнергией. Излишки электричества будут поступать в общую энергосеть для дальнейшего использования. Внутри здания расположатся квартиры, офисы, магазины, отель и спа-салон. Строительство будет завершено в 2020 году. опубликовано  

  P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: greenevolution.ru/2017/01/11/futuristicheskie-bashni-na-karibax/

Самые большие ветрогенераторы

Поделиться



Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.



SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.



В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома. 

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.



Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.
 

Почему ветряки не заменят АЭСОдна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где по климатическим данным за 1962-2000 годы почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности. 

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности. опубликовано  

 

Источник: geektimes.ru/post/284188/

Mitsubishi построит морские ветряные электростанции в Европе

Поделиться



Mitsubishi Corp. построит ветряную электростанцию Norther («Северный ветер») в Северном море в 23 км от побережья Бельгии. Мощность каждой турбины составит 8,4 мегаватт — рекордный показатель для ветрогенератора. В общей сложности компания установит 44 турбины на 370 мегаватт. Этой энергии хватит для обеспечения электричество 400 000 семей.





Строительство масштабного проекта оценивается в 150 млрд йен. Партнером японской корпорации выступит бельгийская компания Elnu, которая специализируется на возобновляемой энергетике, а также голландская энергетическая компания Eneco и строительная фирма Van Oord. Строительство начнется в январе. Ожидается, что Norther будет введена в эксплуатацию летом 2019 года.

В Голландии Mitsubishi Corp. готовит еще более масштабный проект. Ветряную электростанцию построят у побережья Борселя на юго-востоке страны. Всего компания установит около 80 турбин на 680 мегаватт. Морская ветряная электростанция, стоимость которой составит 300 млрд йен, начнет работу в 2020 году. Сотрудничать с японской корпорацией будут Eneco, Van Oord и Royal Dutch Shell.





Напомним, Mitsubishi Corp. уже имеет опыт строительства солнечных электростанций и наземных ВЭС в Европе. У компании также есть две небольших морских ветряных электростанции в Голландии и Португалии. Японская корпорация хочет укрепить свои позиции в чистой энергетике и получить контракты на строительство ветряных электростанций в Северном море от Великобритании и Франции.

Северное море стало главным центром возобновляемой энергетики в Европе. По данным брюссельской ассоциации WindEurope, на данный момент в Северном море действуют 3000 прибрежных турбины. К 2030 году они будут выдавать 4 ГВт, что составит 7% от всей произведимой в Европе электроэнергии. В этом регионе ветряная энергия стоит дешевле атомной, что приводит к появлению масштабных проектов по выработке электричества от ветра. опубликовано  

 

Источник: hightech.fm/2016/12/15/mitsubishi_wind

Альтернативная энергетика для дома своими руками: обзор лучших эко-технологий

Поделиться



Каждому жителю нашей планеты отлично известно, что запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения. «Зеленые технологии» позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

 

Популярные источники возобновляемой энергии

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы.  Ярким примером тому являются водяные мельницы и ветряки. С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.



Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы.
Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.  Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.



При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза. Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Система солнечного электроснабжения: принцип работы

Понимание назначения каждого из элементов системы позволит представить ее работу в целом. Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов. Их основная особенность состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Соответственно одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, что достаточно для зарядки 12-вольтовой аккумуляторной батареи.
  • Аккумуляторы. Одной батареи надолго не хватит, поэтому система может насчитывать до десятка таких устройств.  Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью  3-5 кВт.
Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.



Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

 

Изготовления солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах.  При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов. Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.



Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

 

Корпус солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло
  • ДВП
Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером. По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.



Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

 

Устройство солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам. По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.



Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений (+) После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора. Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.



Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

 

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы. При установке нужно учесть следующие важные параметры:

Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега. Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей. Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.



В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

 

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении альтернативной энергии для вашего дома. Они не только наиболее удобны, но и экологически безопасны. Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения. В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.
По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • Воздух – вода. Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • Вода – вода. Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • Воздух – воздух. Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.
При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади. При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.



От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

 

Принцип работы теплового насоса

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры. По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.
Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса  может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.



Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше (+)

 

Тепловой насос с узлами от бытовой техники

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л.  В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника. Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак. Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.



Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.



Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника. Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин. Из одной скважины будет происходить забор воды с последующей подачей в испаритель. Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона. На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

 

Ветрогенераторы дают киловатты электроэнергии

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось. Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с. Установку лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.



Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

 

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть вертикальными и горизонтальными. Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы. Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими. Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги. При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.
Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.



Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

 

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти, вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор, который вырабатывает переменный ток;
  • Контроллер управления лопастями, отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи, нужны для накопления и выравнивания электрической энергии;
  • Инвертор, выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта, необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.
При этом генератор, лопасти и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом



В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

 

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения. При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево. Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки. Работы выполняются в следующем порядке:

Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража; С помощью лобзика трубу следует разрезать вдоль на 4 части; Одна часть станет шаблоном для изготовления всех последующих лопастей; После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой; Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением; Также к этому диску после переделки нужно прикрутить генератор. Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см. Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.



Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса. Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

 

Переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора. Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении. Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.



Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

 

Завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм. Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.



Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия (+) Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.  Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра. 

Отличительной особенностью альтернативных источников энергии является их экологическая чистота и безопасность. Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников. опубликовано  

 

Источник: sovet-ingenera.com/eco-energy/eko-dom/alternativnaya-energiya-svoimi-rukami.html

Автонавес заряжает электромобили от энергии солнца и ветра

Поделиться



Giraffe 2.0 — это навес-электростанция, которая может подзарядить экологически чистой энергией сразу два ваших автомобиля. Энергия, полученная от солнечных панелей и ветряных турбин, может быть использована для зарядки двух транспортных средств нахоящихся под безопасной кровлей. Дизайн этой конструкции является и ярким и практичным, сочетая в себе художественные изгибы и раму из экологически чистого дерева.





Giraffe 2.0 состоит из тех же 24 солнечных панелей и ветровой турбины как и модель 2013 года, но в нем добавлена функция зарядного устройства электроавтомобилей. Уникальное расположение фотоэлектрических панелей позволяет производить электроэнергию на 2 часа раньше и на два часа позже, чем это делают, традиционно смонтированные, панели. Этот художественный изгиб и ветрянная турбина, расположенная на вершине 12-ти метровой деревянной балки, напоминают велечественое животное от которго конструкция и получила свое название.

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций — важный фактор оздоровления — .

 



 

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos 

По оценкам Giraffe 2.0 производит около 13850 кВт*ч электроэнергии ежегодно с помощью солнычных батарей и ветрянной турбины. Этого заряда хватит каждому из двух электромобилей для преодоления 45 тыс. км. в год. Исользование древесины в строительстве рамы конструкции было целенаправленным решением дизайнеров, которые ценят экологичные материалы.





Ориентировочная стоимость одной такой конструкции составляет 60800 $ при относительно легкой и быстрой сборке. опубликовано  

 

Источник: inhabitat.com/this-hybrid-carport-harnesses-wind-and-solar-energy-to-charge-your-ev/

Ветрогенераторы смогут обеспечить Испанию энергией на 100%

Поделиться



Отсутствие богатых природных ресурсов заставляет Испанию искать альтернативные пути добычи энергии. Ветряные турбины обеспечивают стране до 70% всей необходимой электроэнергии, и на этом испанцы останавливаться не намерены. Но несмотря на новые рекорды, счета за электричество с каждым годом только растут. В ночное время суток в ноябре прошлого года ветрогенераторы произвели 70% всей необходимой стране электроэнергии. В январе 2015 года был зарегистрирован дневной рекорд — 54% электричества поступило от ветряных источников.





Один из крупнейших испанских операторов энергии ветра Acciona управляет 9500 ветрогенераторами по всему миру. В компании считают, что Испания вырабатывает достаточно ветряной энергии, чтобы ежедневно обеспечивать ей 29 млн домов.

Ежедневно ветрогенераторы производят 37% всей электроэнергии в стране. Глава центра управления Acciona в Памплоне Мигель Эспелета считает, что скоро страна добьется показателя в 100%.

Евросоюз установил для Испании планку — к 2020 году 20% всей энергии, включая электричество, транспортные нужды, охлаждение и обогрев, должно поступать из возобновляемых источников. На данный момент страна замерла на показателе 17,4%.

Испания не может похвастаться богатыми ресурсами. Газ, нефть и уголь в основном импортируются из других стран. Основное ядро испанской энергетики составляют АЭС — они обеспечивают 20,9% электроэнергии. Природный газ и уголь производят по 15%.

Несмотря на распространение ветряной энергии, цены на эле ктричество в стране неумолимо растут. С 2006 года они подскочили на 60%. Так как ветер может вести себя непредсказуемо, в качестве запасного варианте стране приходится использовать другие источники, в том числе АЭС, содержание которых обходится дорого.





Эти особенности вряд ли смогут повлиять на общее развитие ветряной энергетики. По прогнозам Всемирного совета по ветряной энергетике (GWEC), ветрогенераторы обеспечат 20% всей мировой электроэнергии к 2030 году. По оценкам аналитической компании MAKE Consulting, в течение ближайших 10 лет объем выработанной в Европе энергии ветра возрастет на 140 ГВт. 60% мощностей разместят у себя страны Северной Европы, 28% — Южная Европа, а на долю Восточной Европы останется 12%.

Пример успешного развития чистой энергетики показывает Шотландия. В среднем страна получает 60% энергии от возобновляемых источников, но в августе ветрогенераторы выработали рекордные 106% электроэнергии, необходимой стране. опубликовано  

 

 

Источник: hightech.fm/2016/10/26/spain

Новые ветро-гидротурбины производят энергию, даже если нет ветра

Поделиться



Немецкая энергетическая компания Max Bögl Wind AG и американская GE Renewable Energy установят в одном из регионов Германии первые в мире ветро-гидротурбины, которые сочетают в себе преимущества двух видов возобновляемой энергии. Проект включает в себя установку самых больших в мире ветряных турбин, высота которых составит примерно 178 метров — они же будут выполнять и роль резервуаров с водой. Сама станция работает следующим образом: в то время, когда движение воздуха отсутствует и ветряные турбины не могут вырабатывать электричество, в процесс включаются гидротурбины — они генерируют энергию из воды, которая спускается из резервуаров вниз по холму, а затем, когда снова появляется ветер, вода перекачивается обратно в резервуары. Такая система позволяет вырабатывать энергию непрерывно.





Новая станция будет построена к 2018 году, и ее производительность составит примерно 16 МВт энергии в год (для сравнения, обычная ветряная станция такого же размера производит примерно 13,6 МВт). Огромные турбины будут установлены в Швабско-франконском лесу на юго-западе Германии — так как для нормального функционирования ветро-гидротурбин необходимо, чтобы они стояли на холме или какой-либо возвышенности, это место идеально подходит для станции.

Старший менеджер по наземным ветряным электростанциям GE Renewable Energy Клифф Харрис также рассказал, что в этом регионе Германии живет много умельцев и изобретателей, поэтому концепция новой электростанции отлично вписывается в местный культурный фон. «Это немного рискованно и не может работать, где угодно. Но станция проработает десятки лет, и за это время мы рассчитываем увидеть преимущества от ее использования», — говорит он.





Однако, несмотря на общемировой рост выработки возобновляемой энергии, некоторые страны уже начинают сталкиваться с препятствиями со стороны регуляторов: электросети не могут справиться с нагрузкой, которая включает в себя как энергию, получамую от обычных угольных электростанций, так и от электростанций, работающих за счет возобновляемых источников. По сообщениям СМИ, правительство Германии недавно даже начало платить производителям энергии ветра за то, чтобы их станции работали не на полную мощность. опубликовано  

 

 

Источник: hightech.fm/2016/10/21/hydro-turbines