Может ли «невозможный двигатель» работать на… темной материи?

Поделиться



На каждое действие есть равное и противоположное действие. У этой формулировки третьего закона Ньютона есть два очень важных следствия: во-первых, существует физическая величина, которая всегда сохраняется во Вселенной (импульс), а во-вторых, законы физики одинаковы независимо от вашего положения в пространстве. Казалось бы, всего несколько слов, а на самом деле они колоссальны, потому что если вы хотите заставить, например, устройство изменить движение, вам нужно его чем-нибудь толкнуть.





Это может быть выхлоп ракеты, шины против дороги, колеса поезда на рельсах или даже фотоны, отраженные от паруса. Единственное, что запрещено, это так называемый инерцоид, движение без реакции: действие без противодействия. Именно это представляет собой EMDrive — «невозможный» космический двигатель, который недавно прошел испытания NASA — по заявлениям. Если он действительно работает как заявлено, он нарушает законы физики. Но есть и возможная лазейка: возможно, реакция есть, просто мы ее не нашли. Возможно, противодействие имеет место, но связано с темной материей.

Согласно стандартной модели космологии, большая часть материи во Вселенной представлена не в форме атомов или других известных частиц. Нет, подавляющее большинство массы — с разницей в 5-к-1 — представлено темной материей. Темная материя не сталкивается, не аннигилирует и больше никак не взаимодействует с собой или с другой, обычной материей при любых известных обстоятельствах, за исключением гравитационного воздействия. Прошло 13,8 миллиарда лет, и она образовала гигантскую, диффузную космическую сеть гравитационных структур и огромные сферические гало свыше миллиона световых лет в диаметре, которые обрамляют галактики вроде нашей. Темная материя пронизывает каждый квадратный сантиметр нашей галактики, включая и каждый объект на Земле, даже наши тела, хоть и в небольших количествах.





При определенных условиях, впрочем, темную материю можно уговорить взаимодействовать с самой собой или с обычной материей, в зависимости от ее природы. Если темная материя состоит из вимпов (WIMP, слабо взаимодействующая массивная частица), то продукт ее аннигиляции можно было бы засечь детекторами. Если же она состоит из очень легких, маломассивных частиц аксионов, она может соединяться с фотонами при определенных условиях. Один из экспериментов, направленных на поиск аксионов, известен как ADMX: эксперимент аксионов темной материи. В 1983 году физик Пьер Сикиви изобрел аксионный галоскоп, используя тот факт, что аксион-фотонную пару можно усилить при определенных условиях внутри электромагнитной полости. Спустя двадцать лет из этого исследования вырос ADMX и с тех пор ученые ищут аксионы, используя этот метод.





На сегодняшний день, к сожалению, их поиски пока не увенчались успехом. Возможно, аксионов не существует, либо, если они не являются темной материей, возможно, они обладают иными параметрами, для которых ADMX недостаточно чувствителен. Вполне возможно, различные электромагнитные полости с разными свойствами могли бы активировать взаимодействия с аксионами. Возможно, фотон-аксионные взаимодействия могут происходить, а полость с нужными параметрами привела к рассеянию аксионов в предпочтительном направлении. Маловероятно, но вполне допустимо, что EMDrive и есть такая полость.

Как это работает? В каждый отдельно взятый момент времени частицы темной материи проходят через все области пространства, не стесняясь присутствия материи или других частиц Стандартной модели. В электромагнитной полости фотоны определенной частоты скачут во всех направлениях, сохраняя импульс и не создавая тяги. Но если фотоны движутся в определенном направлении — например, в заднюю часть полости — они могут сталкиваться с частицами темной материи и будет вот что:





Если происходит именно это, то это настоящий прорыв. Поскольку темная материя есть повсюду, нам понадобился бы только источник энергии — не топливо — чтобы путешествовать по всей галактике, потому что в любой точке пространства мы найдем достаточно темной материи. Это значит, что мы получим метод обнаружения темной материи, которая случайно сталкивается с нашими частицами, и подтвердим таким образом ее существование. И что самое главное, все это не нарушает законы физики, ведь импульс сохраняется.

Результаты испытаний EMDrive до сих пор не доказаны. Есть много потенциальных источников ошибок, и сами измерения указывают на большую неопределенность в том, сколько производится тяги. Пока непонятно, действительно ли существует тяга без реакции или же существует реакция, которую мы пока не нашли.

Да и объяснение с участием темной материи тоже будет сомнительным, поскольку требует много неизвестных. Но если EMDrive действительно работает, используя темную энергию, и тайна темной материи будет решена раз и навсегда самым неожиданным образом, это будет просто невероятно. опубликовано  

 

 

Источник: hi-news.ru/technology/mozhet-li-nevozmozhnyj-dvigatel-rabotat-na-temnoj-materii.html

Предполагаемое количество темной материи в Млечном Пути уменьшилось вдвое

Поделиться







Новое измерение темной материи в Млечном Пути показало, что загадочного вещества в два раза меньше, чем считалось ранее. Австралийские астрономы использовали метод, разработанный почти 100 лет назад, чтобы обнаружить, что вес темной материи в нашей собственной галактике составляет 800 000 000 000 солнечных масс.

Впервые ученые прошлись по краю Млечного Пути, внимательно исследуя окраины галактики в 5 миллионах миллиардов километров от Земли, пишет Phys.org. Астрофизик доктор Прайфаль Кафле из Университета Западной Австралии и Международного центра радиоастрономических исследований в очередной раз отметил, что ученым известно, что большая часть Вселенной скрыта:

«Звезды, пыль, вы и я, все, что мы видим, составляет порядка 4% от всей Вселенной. Около 25% приходится на темную материю, а остальное — темная энергия».

Доктору Кафле удалось измерить массу темной материи в Млечном Пути, изучая скорость звезд во всей галактике, в том числе и на ее окраинах, которые до этого момента не изучались в подробностях. Он использовал надежную и проверенную временем технику, разработанную британским астрономом Джеймсом Джинсом в 1915 году — за десятки лет до того, как заговорили о темной материи.

Измерения Кафле помогли разрешить загадку, над которой теоретики бились почти двадцать лет.

«Современная идея формирования и эволюции галактики, известная как теория Лямбда-CDM (холодная темная материя), предполагает, что вокруг Млечного Пути должно быть намного больше спутниковых галактик, которые можно разглядеть невооруженным глазом, но мы их почему-то не видим, — говорит Кафле. — Когда вы возьмете за основу наши измерения массы темной материи, теория покажет, что может быть только три спутниковых галактики, которые мы и видим: Большое Магелланово Облако, Малое Магелланово Облако и карликовая галактика Стрельца».

Астрофизик Сиднейского университета, профессор Джерант Льюис, который также принимал участие в исследовании, говорит, что проблема с пропавшими спутниками «была бельмом на глазу космологов в течение почти 15 лет». Работа Кафле показала, что все может быть не так плохо, как полагали, хотя, безусловно, остается ряд проблем, которые нужно решить.

Исследование также представило целостную модель Млечного Пути, что позволило ученым измерить несколько интересных вещей, например, скорость, которая необходима для того, чтобы покинуть галактику.

«Будьте готовы разогнаться до 550 километров в секунду, если хотите покинуть гравитационное поле нашей галактики, — рассказал Кафле. — Ракете, взлетающей с Земли, необходима скорость в 11 км/с, чтобы покинуть поверхность».

Источник: hi-news.ru

Физики зафиксировали возможную темную материю Солнца

Поделиться







Анализ данных, собранных с помощью телескопа в течение 12 лет, выдал намек на то, что может быть первым обнаружением темной материи, сообщает Nature. Астрономы нашли изменения в потоке рентгеновского излучения, за которым наблюдала обсерватория Европейского космического агентства. Изменения навели на мысль об аксионах — гипотетических частицах темной материи — которые взаимодействуют с магнитным полем Земли.

Темная материя называется темной не из-за своего цвета, а из-за того, что о ней совсем ничего не известно. Как полагают, это вещество составляет не менее 85% всей материи во Вселенной. Она темная, потому что ее присутствие обнаруживается по гравитационному воздействию повсюду во Вселенной, но прямо обнаружить ее до сих пор не удалось никому. Хотя намеки, конечно, появляются.

Если эта информация подтвердится, обнаружение аксионов будет невероятным открытием. Руководитель исследования, астроном Джордж Фрейзер из Университета Лестера в Великобритании, умер спустя два дня после того, как его коллеги представили бумагу для публикации. Исследование Фрейзера было «самой удивительной лебединой песней», написал Энди Лоуренс, астроном из Астрономического института в Эдинбурге.

Хотя работа была принята и будет опубликована 20 октября, оставшиеся в живых авторы не спешат открывать шампанское.

«Мы обнаружили необычные результаты, которые не можем объяснить ни одним из традиционных способов, но которые может объяснить теория аксионов, — говорит Энди Рид, соавтор работы. — Но это только гипотеза».

Аксионы были изначально предложены как объяснение аномалий в другой области физики — теории сильного ядерного взаимодействия, одной из четырех фундаментальных сил природы. Эти незаряженные и очень легкие частицы могут появляться в ядре Солнца и едва ли будут взаимодействовать с обычной материей. Это означает, что они могут проскользать через тысячи километров солнечной плазмы и убегать в космос. Однако аксионы будут взаимодействовать с магнитными полями вроде того, что окружает Землю, и превращаться в рентгеновские фотоны. Именно эти фотоны, как думают ученые, они и видели.

Команда ученых обнаружила, что когда европейской зонд XMM-Newton прошел через сильное магнитное поле на солнечной стороне Земли, он зафиксировал более интенсивный рентгеновский сигнал, чем когда был на дальней стороне Земли. Исключив известные источники рентгеновских лучей, ученые ожидали увидеть фоновый сигнал таким же, какой был раньше.

В своей 67-страничной работе ученые сделали все возможное, чтобы исключить заурядные земные явления — например, взаимодействие солнечного ветра с магнитным полем Земли, и только потом перешли к объяснению с помощью теории аксионов.

Одним из необычных аспектов этого анализа является то, что XMM-Newton улавливает рентгеновские фотоны даже если не смотрит прямо на Солнце, а под прямым углом. (Ожидалось, что фотоны будут продолжать двигаться в том же направлении, из которого пришли аксионы). Однако, как говорят авторы, аксионы продолжали рассеиваться и попадать в телескоп.

Также они указывают на то, что намеки на подобный сигнал обнаружила рентгеновская обсерватория «Чандра», хотя формальное подтверждение этого займет несколько лет анализа.

Не все довольны интерпретацией с помощью аксионов. Астроном Питер Коулз из Университета Сассекса в Великобритании назвал доказательства «косвенными». Он говорит, что скорее поставил бы на смешанную физику локальной плазмы, нежели на что-то более фундаментальное.

Игорь Гарсия Ирасторца, работающий на аксионном солнечном телескопе CERN (CAST), соглашается с тем, что сигнал интригует. Но тип аксионов, который мог бы объяснить этот сигнал, конфликтовал бы с другими астрофизическими наблюдениями. Также, по его словам, свойства этих частиц должны отличаться от тех, которые теоретически предполагались десятилетиями.

Майк Уотсон, работающий также в Университете Лестера, но не принимавший участие в работе, говорит, что Фрейзер был «исключительным ученым» и мастером своей работы.

«Интерпретация довольно интересная, и по-человечески стоило бы признать ее верной как дань памяти Джорджу. Но в науке так не делают».

Источник: hi-news.ru

В нашей Вселенной медленно исчезает время

Поделиться







Что, если временную часть в уравнении пространственно-временного континуума буквально исключить? Одно из последних исследований, возможно, свидетельствует о том, что время медленно и постепенно исчезает из нашей Вселенной и в один прекрасный день испарится совсем. Новая радикальная теория может объяснить космологическую загадку, которая морочила голову ученым в течение многих лет.

Ранее ученые измеряли свет далеких взрывающихся звезд, чтобы показать, что Вселенная расширяется, и темп этого расширения постоянно растет. Ученые предположили, что эти сверхновые разлетаются на части быстрее, чем стареет Вселенная. Физики также сделали вывод, что некая антигравитационная сила должна разводить галактики в стороны, и стали называть эту неизвестную силу «темной энергией».

Идея того, что само время может исчезнуть через миллиарды лет — и все остановится — была предложена еще в 2009 году профессорами Хосе Сеньовилла, Марком Марсом и Раулем Вера из Университета Баска Кантри в Бильбао и Университета Саламанки в Испании. Следствием этого кардинального движения самого времени к концу является альтернативное объяснение «темной энергии» — таинственной антигравитационной силы, которая была предложена для объяснения некоторых космических явлений.



Однако по сей день никто не знает, чем является темная энергия на самом деле и откуда берется. Профессор Сеньовилла и его коллеги предложили невероятную альтернативу. Ученые предложили исключить такое понятие как темная энергия вообще и еще раз пересмотреть наши взгляды. По мнению Сеньовиллы, мы обманываем сами себя, думая, что Вселенная расширяется, когда на самом деле это время замедляется. На бытовом повседневном уровне это замедление будет незаметно. Но если отслеживать ход Вселенной в течение миллиардов лет, то на космических масштабах все станет очевидно. Это изменение будет бесконечно медленным с человеческой точки зрения, но с точки зрения космологии, в силах которой изучать свет древних солнц, светивших миллиарды лет назад, его можно с легкостью измерить.

Предложение группы ученых, опубликованное в журнале Physical Review D, исключает темную энергию как вымысел. Вместо этого Сеньовилла объясняет появление ускорения постепенным замедлением самого времени.

«Мы не говорим, что расширение Вселенной само по себе является иллюзией, — объясняет физик. — Мы считаем, что иллюзией может быть ускорение этого расширения — это, в свою очередь, не отменяет наличие расширения, которое [для нас] наращивает свой темп».

Если время постепенно замедляется, «а мы наивно продолжаем использовать свои уравнения для определения изменений скорости расширения относительно обычного течения времени, то простая модель, продемонстрированная в нашей работе, показывает эффективное ускорение этого расширения».



В настоящее время астрономы могут определить скорость расширения Вселенной, используя так называемый метод «красного смещения». В основе этой техники лежит понимание того, что звезды, которые движутся от нас, краснее тех, что движутся в нашем направлении. Ученые ищут сверхновые определенного рода, которые стали эталоном в этом плане. Тем не менее точность этих измерений предполагает инвариантность времени по всей Вселенной. Если время замедляется, согласно новой теории, наше одинокое временное измерение медленно превращается в новое пространственное измерение.  Таким образом, далекие древние звезды, за которыми наблюдают космологи из нашей перспективы, кажутся ускоряющимися.

«Наши расчеты показывают, что мы можем подумать, будто расширение вселенной ускоряется», — говорит Сеньовилла. В основе теории лежит один из вариантов теории суперструн, согласно которому наша Вселенная ограничена поверхностью мембраны, или браны, плавающей в многомерном пространстве. Спустя миллиарды лет время вообще перестанет быть временем.

«Тогда все замерзнет, словно снимок одного момента, навсегда. Нашей планеты к тому времени уже не будет».

Несмотря на всю свою радикальность и беспрецедентность, эти идеи не остаются без поддержки. Гэри Гиббонс, космолог Кембриджского университета, говорит, что у такой концепции есть свои плюсы. «Мы считаем, что время появилось в процессе Большого Взрыва, и если время может появляться, значит оно может и исчезать — это всего лишь обратный эффект».

Существует ли время?





В 2011 году ученые из Научно-исследовательского центра Биста в Птуй, Словения, предположили, что ньютоновская идея времени как абсолютной величины, текущего само по себе, равно как и предположение, что время — это четвертое измерение пространства-времени — неверны. Они предложили заменить эти понятия времени более соответствующим нашему физическому миру: время как количественный порядок изменений.

В двух статьях, опубликованных в Physics Essays, Амрит Сорли, Дэвид Фискалетти и Дюшан Клинар предприняли попытку объяснить, что то, что мы имеем в виду под временем, на самом деле является абсолютной физической величиной, играющей роль независимой переменной (время, t, часто является осью X в системе координат, демонстрирующей эволюцию физической системы). Но, как отмечают ученые, мы никогда не измеряем t. Мы измеряем частоту и скорость объекта. Само по себе время является сугубо математической величиной и не существует физически.

Эта точка зрения означает не то, что время не существует, а то, что время имеет больше общего с пространством, нежели с идеей абсолютного времени. Таким образом, хотя четырехмерное пространство-время, как зачастую предполагают, состоит из трех измерений пространства и одного измерения времени, взгляд ученых предполагает, что было бы более корректно представлять пространство-время в виде четырех измерений пространства. Другими словами, Вселенная «безвременна».



«Пространство Минковского — не три измерения плюс время, а четыре измерения, — писали ученые. Точка зрения, согласно которой время представлено физической сущностью, в которой происходят материальные изменения, заменяется более удобной точкой зрения, в которой время будет просто числовым порядком материального изменения. Этот взгляд лучше отвечает физическому миру и лучше объясняет мгновенные физические явления: гравитацию, электростатическое взаимодействие, передачу информации в ходе эксперимента ЭПР и другие».

«Идея того, что время представляет собой четвертое измерение пространства, не принесла особого прогресса физике и находится в противоречии с формализмом специальной теории относительности. Сейчас мы разрабатываем формализм трехмерного квантового пространства на основе работ Планка. Похоже на то, что вселенная трехмерна на макро- и микроуровнях в планковских объемах. В таком трехмерном пространстве нет «сокращения длины», нет «замедления времени». А что есть, так это скорость материальных изменений, которая «относительна» в эйнштейновском смысле».

Ученые приводят пример этой концепции времени, изображая фотон, который перемещается между двумя точками в пространстве. Пространство между ними полностью состоит из планковских длин, то есть из мельчайших дистанций, которые может преодолеть фотон в момент времени. Когда фотон перемещается на планковскую длину, он описывается как передвигающийся исключительно в пространстве и не в абсолютном времени. Фотон можно рассматривать как движущийся из точки 1 в точку 2, и его позиция в точке 1 — это «перед» позицией в точке 2, в буквальном смысле, поскольку цифра 1 идет перед цифрой 2 в числовом ряде. Числовой порядок не эквивалентен временному порядку, то есть цифра 1 во времени не существует перед цифрой 2, только численно.



Без использования времени как четвертого измерения пространства-времени, физический мир можно было бы описать более точно. Как отмечал физик Энрико Прати в недавнем исследовании, гамильтонова динамика (уравнения в классической механике) крайне четко определяется без понятия абсолютного времени.

Другие ученые отмечали, что математическая модель пространства-времени не соответствует физической реальности, и предложили использовать вневременное «состояние пространства», которое обеспечило бы более точные рамки. Также ученые отмечали фальсифицируемость двух понятий времени. К примеру, понятие времени как четвертого измерения пространства — как фундаментальной физической емкости, в которой происходит эксперимент — может быть сфальсифицировано экспериментом, в котором время не существует.

«Теория абсолютного времени Ньютона не фальсифицируема; вы не можете доказать ее или опровергнуть — вы должны поверить ей, — говорит Сорли. — Теория времени как четвертого измерения пространства фальсифицируема, и своей последней работой мы показали, что вероятность такой фальсификации весьма высока. Экспериментальные данные показывают, что время — это то, что мы измеряем часами. А часами мы измеряем численный порядок материальных изменений, то есть движение в пространстве».

Ахиллес и черепаха



В дополнение к обеспечению более точного описания природы физической реальности, понятие времени как количественного порядка изменений может разрешить парадокс Зенона «Ахиллес и черепаха». В этом парадоксе Ахиллес пытается догнать черепаху в беге наперегонки. Но хотя Ахиллес может бежать в 10 раз быстрее черепахи, он никогда не обгонит черепаху, потому что всякий раз, когда Ахиллес пробегает определенное расстояние, черепаха проходит одну десятую этого расстояния. Таким образом, когда бы Ахиллес не достигал пункта, в котором была черепаха, она все равно будет немного впереди. Хотя вывод, что Ахиллес никогда не сможет обогнать черепаху, очевидно ложный, есть много других объяснений этого парадокса.

Парадокс можно разрешить, если переопределить скорость, так что скорость обоих бегунов будет определяться численным порядком их движений, а не перемещением и направлением во времени. С этой точки зрения Ахиллес и черепаха будут двигаться только через пространство, и Ахиллес точно обгонит соперника в пространстве, хотя и не в абсолютном времени.

Некоторые из последних исследований поставили под вопрос теорию, что мозг представляет время как внутренние «часы», испускающие нейронные тики, и предположили, что мозг представляет время в виде пространственного распределения, регистрируя активацию разных нейронных узлов. Хотя мы воспринимаем события как случающиеся в прошлом, настоящем или в будущем, эти понятия могут быть просто частью психологических рамок, в которых мы испытываем материальные изменения в пространстве.

В любом случае, если эту теорию и можно рассмотреть математически (в виде решения проблемы стрелы времени), остается еще один вопрос без ответа: что такое время?

Источник: hi-news.ru

Зафиксирован возможный сигнал темной материи

Поделиться







Ученые поймали нетипичное излучение фотона в рентгеновских лучах, идущих из космоса, и утверждают, что это может быть свидетельством существования частицы темной материи. Сигнал пришел вследствие очень редкого события во Вселенной: фотон был излучен в результате разрушения гипотетической частицы, возможно, «стерильного нейтрино». Если открытие подтвердится, оно откроет новую эпоху исследований в физике частиц.

«Возможно, оно введет нас в новую эру астрономии, — сказал Олег Ручайский из Лейденского университета. — Подтверждение этого открытия может привести к строительству новых телескопов, специально предназначенных для изучения сигналов, поступающих от частиц темной материи. Мы будем знать, где искать по этим следам темные структуры в космосе и сможем реконструировать образование Вселенной».

Может ли это открытие быть первым вещественным доказательством существования темной материи во Вселенной? После просеивания кучи рентгеновских данных, ученые из Лаборатории физики элементарных частиц и космологии EPFL и Лейденского университета пришли к выводу, что идентифицировали именно такой сигнал — частицы темной материи. Это вещество, которое до сих пор остается сугубо гипотетическим, не вписывается ни в одну из стандартных моделей физики, кроме гравитационной силы. Исследование ученых будет опубликовано на следующей неделе в журнале Physical Review Letters, пишет Phys.org.

Когда физики изучают динамику галактик и движение звезд, они сталкиваются с загадкой. Если принимать во внимание только видимую материю, уравнения просто не складываются: элементов, которые могут быть наблюдаемы, просто недостаточно для объяснения вращения объектов и существующих гравитационных сил. Чего-то не хватает. Отсюда ученые пришли к выводу, что есть некий невидимый вид материи, которая не взаимодействует со светом, а только с гравитационной силой. Вещество, которое получило название «темная материя» за свою загадочность, как полагают, составляет по меньшей мере 80% материи во Вселенной.

Недавно две группы ученых сообщили, что зафиксировали сигнал, который может приводить к темной материи. Одна из них, под руководством Олега Ручайского и Алексея Боярского, тоже профессора Лейденского университета в Нидерландах, обнаружила сигнал, анализируя рентгеновские лучи, испускаемые двумя небесными объектами — скоплением галактик Персей и галактикой Андромеда. После сбора тысячи сигналов телескопа XMM-Newton и устранения тех, которые пришли от известных источников, была выявлена аномалия, которая исключает возможности ошибки измерения или инструмента.

Сигнал появился в рентгеновском спектре как слабая атипичная эмиссия фотона, которую нельзя отнести ни к одной из известных форм материи. Прежде всего, «распределение сигнала в галактике в точности соответствует тому, что мы ожидали увидеть в случае с темной материей, то есть сконцентрированное и интенсивное в центре объектов и слабое и диффузное по краям», объясняет Ручайский. «Чтобы проверить свои выводы, мы взглянули на данные нашей собственной галактики Млечный Путь и пришли к тем же результатам», — добавляет Боярский.

Источник: hi-news.ru

Что-то во внутренней структуре Вселенной ускользает от понимания ученых

Поделиться







«Мы все ищем и ждем чего-то, может быть, вот сейчас, еще немного данных, которые приведут к моменту истину, — говорит Гарри Нельсон, профессор физики из Калифорнийского университета в Санта-Крус, научный руководитель обновленного проекта LUX под названием LUX-ZEPLIN. — Мысль о том, что есть что-то, что мы просто пока не понимание и не знаем, пробирает до мурашек».

Ученые давно знают, что где-то в космосе есть темная материя, молча управляющая движением и структурами Вселенной. Но из чего на самом деле состоит темная материя? На что похожи ее частицы? Это остается загадкой, и опыт за опытом оставляет ученых с пустыми руками: ученые просто не могут поймать эти неуловимые частицы. Хотя регулярно появляются намеки.

При определенном везении эта ситуация может измениться. С чувствительностью, в десять раз превышающей чувствительность предыдущих детекторов, три недавно запущенных эксперимента по обнаружению темной материи заставили ученых скрестить пальцы и надеяться, что они, наконец, смогут поймать частицы темной материи. Ученые работают над этим, но признают, что успех или неудачу их работы может определить только природа.

На прошлой неделе, изучая данные, собранные космическим аппаратом XMM-Newton, команда ученых наблюдала странный всплеск рентгеновского излучения, пришедшего от двух разных небесных объектов — галактики Андромеда и скопления галактик Персей. Всплеск не принадлежит ни одному из известных частиц или атомов, а значит, наводит на мысли о темной материи в качестве источника.

«Распределение сигнала в галактике в точности соответствует тому, что мы ожидали увидеть в случае с темной материей, то есть сконцентрированное и интенсивное событие в центре объектов и слабое и диффузное по краям», — писал соавторработы Олег Ручайский.

«Природа скромничает, — говорит Энектали Фигероа-Фелисиано, адъюнкт-профессор физики Массачусетского технологического института, работающий над одним из трех новых экспериментов. — Есть что-то во внутренней структуре работы Вселенной, чего мы просто не понимаем. Когда теоретики расписывают все возможные методы взаимодействия темной материи с нашими частицами, они приходят к выводу, что в простейших моделях мы должны были уже ее увидеть. А раз мы еще ничего не нашли, есть что-то, что еще только предстоит расшифровать».

Первый из новых экспериментов, Axion Dark Matter eXperimetn, будет искать теоретический тип частицы темной материи — аксион. ADMX будет искать доказательства того, что эти чрезвычайно легкие частицы преобразуются в фотоны в мощном магнитном поле. Медленно изменяя магнитное поле, детектор будет пытаться зафиксировать массу одного аксиона одновременно.

«Мы продемонстрировали, что у нас есть инструменты, необходимые, чтобы увидеть аксионы, — заявил Грей Рыбка, научный сотрудник Вашингтонского университета, один из руководителей эксперимента ADMX Gen 2. — С Gen 2 мы приобретаем мощный, очень мощный холодильник, который очень скоро прибудет. Как только он прибудет, мы сможем сканировать очень, очень быстро и у нас будут хорошие шансы найти аксионы — если они, конечно, будут».

Два других новых эксперимента будут искать другой тип теоретической темной материи — WIMP, вимпы. Будучи слабо взаимодействующими массивными частицами, вимпы взаимодействуют с нашим миром крайне слабо и очень редко. Эксперимент LUX (Large Underground Xenon), который начал работу в 2009 году, сейчас находится в стадии модернизации — повышает чувствительность для обнаружения вимпов. Между тем, коллаборация Super Cryogenic Dark Matter Search, которая ищет сигналы легковесных вимпов на своем детекторе с 2013 года, уже заканчивает проект нового эксперимента, который расположится в Канаде.

«В некотором смысле мы ищем золото, — поделился мыслями Фигероа-Фелисиано, член эксперимента SuperCDMS. — У Гарри есть кастрюля, и он ищет золото в глубоком пруду, мы ищем его в пруду немного поменьше, а Грей — чуть выше по течению, копается на своем месте. Мы не знаем, кто найдет золото, потому что не знаем, где оно находится».

Рыбка соглашается, но добавляет, что есть вероятность того, что все три эксперимента найдут темную материю. «Нет никаких гарантий того, что темная материя должна состоять из одного типа частиц. Темная материя на треть может состоять из аксионов, на треть из тяжелых вимпов и на треть из легких вимпов. Было бы хорошо найти все элементы».

Только вот золотой самородок, который ищут все три эксперимента, стоит очень дорого. И хотя поиск сложен, все три ученых соглашаются, что он стоит свеч, потому что открытие темной материи позволит нам пересмотреть очень многое в нашей Вселенной.

Источник: hi-news.ru

10 сюрпризов, которые нам преподнесли черные дыры

Поделиться







Черная дыра — это огромное количество материи, втиснутой в крошечную область, с огромнейшим гравитационным притяжением, не соответствующим размерам этой области. Многие черные дыры образуются, когда гигантские умирающие звезды коллапсируют. Эти пожиратели всего и вся обладают таким мощным притяжением, что даже свет не может покинуть определенные пределы дыры. Так считают ученые.

Представьте себе это так. Если бы Земля стала черной дырой (этого, конечно, не произойдет), она весила бы столько же, но по размерам была меньше глазного яблока. При этом это глазное яблоко обладало бы таким же гравитационным притяжением, и Луна вращалась бы на его орбите.

Вы не можете увидеть черную дыру напрямую, потому что границу вокруг ее чрева (горизонт событий) не дает свету вернуться. Но невидимый ветер сгибает и раскачивает деревья — мы знаем, что черные дыры существуют, поскольку видим эффекты, которые они проявляют на свое окружение.

Не все ученые верят в черные дыры. Но те, кто верят, не перестают удивляться.

Наши предки могли видеть черную дыру Млечного Пути





Около двух миллионов лет назад в центре нашей галактики появилась сверхмассивная черная дыра, озарив все вокруг радиационным светом. На тот момент человек только встал на задние ноги и научился ходить прямо. Наши предки могли видеть луну из света в южной части неба, яркое пятно.

Наша черная дыра Sagittarius A* сейчас ведет себя тихо. Но тогда она была активным галактическим ядром, выбрасывающим энергию, которая затмевала все остальное. Причиной этого была «кормежка» черной дыры, ее гравитационная тяга привлекала материю, образующую диск, который нагревался и светился. Если диск состоит из гигантского количества материи, два ярких джета (потока) высокоэнергетических частиц будут излучаться из черной дыры, перпендикулярно ее вращению.

Астрономы разработали теорию активного галактического ядра в 2010 году, когда наткнулись на два пузыря Ферми, растянувшихся на 25 000 световых лет над и под нашей галактикой. Ученые считают, что джеты активного ядра галактики могли создать эти пузыри от одного до трех миллионов лет назад. Наши далекие предки могли наблюдать свет черной дыры несколько тысяч лет. Крис Стрингер, антрополог, считает, что это «было начало рода Homo. Инструменты из камня уже начали делать, но мозг только начал увеличиваться». Если Sagittarius A* снова станет активным галактическим ядром, мы можем получить собственное светопредставление в ночном небе.

Не только черные дыры являются мощными источниками энергии





На протяжении многих лет многие ученые считали, что чрезвычайно яркие рентгеновские источники, известные как ультраяркие источники рентгеновских лучей (ULX), возникают, когда черные дыры пожирают звезды или другую материю. Когда мощная гравитация черной дыры притягивает газ ближайшей звезды, газ закручивается в спираль и образует диск аккреции вокруг черной дыры. Как вода закручивается, прежде чем уйти в водопровод, газ сильно ускоряется, нагревается до чрезвычайно высоких температур и начинает излучать рентгеновский свет во всех направлениях. Чем больше черная дыра «кушает», тем ярче этот свет.

Такой была теория. Но потом в ближайшей галактике M82 астрономы случайно обнаружили источник ULX, который пульсирует, излучая яркие рентгеновские лучи, которые попадают на Землю каждые 1,37 секунд, словно свет маяка. Проблема в том, что черные дыры не пульсируют. Пульсары пульсируют.

Пульсар — это вращающаяся нейтронная дыра (остатки умирающей звезды, которая была недостаточно большой, чтобы стать черной дырой), которая излучает рентгеновский свет в магнитных полюсах. Тем не менее пульсар в галактике M82 был в 100 раз ярче, чем позволяла его масса, если руководствоваться физическим пределом Эддингтона. Он не должен был быть источником ULX. Грубо говоря, пульсар обладал мощностью черной дыры при гораздо меньшей массе. Такой себе эквивалент черной дыры на диете.

Теперь астрономы должны пересмотреть другие источники ULX и проверить, пульсируют ли они. Получается, не каждый источник ULX — черная дыра.

Прожорливее, чем можно представить





До недавнего времени ученые думали, что размер черной дыры определяет максимальную скорость, с которой она поглощает и производит свет (вышеупомянутый предел Эддингтона). Пока не обнаружили P13, черную дыру в галактике NGC7793, которая вращается вокруг сверхгигантской звезды, пожирая ее. При этом P13 пожирает газ своего компаньона в 10 раз быстрее, чем было возможно по мнению астрономов.

P13, как полагают, в 15 раз меньше нашего Солнца, но в миллион раз ярче. Она может поглотить своего спутника меньше чем за миллион лет, что достаточно быстро по меркам космоса. Эта маленькая черная дыра поглощает материю, эквивалентную сотне миллиардов хороших бутербродов или хот-догов, каждую минуту. По этому поводу астрономы шутят: «Как показал легендарный поедатель хот-догов Такеру Кобаяши [очень худой парень], размер не всегда имеет значение в мире поедания на скорость, и даже небольшая черная дыра может поглощать газ с невероятной скоростью», — Роберто Сориа.

Как и пульсар M82, P13 является ультраярким источником рентгеновского излучения, который также нарушает предел Эддингтона. Астрономы пытаются понять, есть ли вообще какое-либо ограничение того, как много может съесть черная дыра.

Сверхмассивных черных дыр может быть больше, чем мы думали





Черные дыры бывают разных размеров, от первичных (размером с атом, например) до сверхмассивных (с массой больше миллиона солнц, упакованных до размера солнечной системы). Могут быть даже редкие гиганты — ультрамассивные черные дыры. Когда-то думали, что только в крупных галактиках могут быть массивные черные дыры. Но в начале 2014 года астрономы обнаружили более сотни карликовых галактик со сверхмассивными черными дырами в центре. По сравнению с Млечным Путем, в котором 200-400 миллиардов звезд, в карликовой галактике может быть всего несколько миллиардов звезд.

В сентябре 2014 года астрономы нашли сверхмассивную черную дыру в сверхкомпактной карликовой галактике M60-UCD1, самой плотной из известных сегодня галактик. Если бы вы жили в M60-UCD1, вы видели бы миллион звезд в ночном небе (на Земле невооруженным глазом можно увидеть только около 4000).

Хотя масса черной дыры в центре Млечного Пути — около четырех миллионов солнечной, на нее приходится меньше 0,01% общей массы нашей галактики. По сравнению с ней, дыра в центре M60-UCD1 просто монстр, массой в 21 миллион солнц — 15% от общей массы галактики. На основе этих выводов некоторые астрономы полагают, что множество компактных карликовых галактик могут быть останками крупных галактик, которые были разорваны на части, столкнувшись с другими галактиками. Поэтому в их центрах может быть множество сверхмассивных черных дыр.

Юные пожиратели массы





Квазары — это яркие центры большинства удаленных галактик, которые мы можем видеть во Вселенной. Полагают, что они представляют собой сверхмассивные черные дыры с дисками аккреции, излучающими невероятно яркий рентгеновский свет. Квазары могут светить в триллионы раз ярче нашего Солнца. И могут быть за миллиарды световых лет от Земли. Смотреть на квазар — это как смотреть на его детский снимок.

Ученые долго думали над тем, как черная дыра могла начать с 10 солнечных масс и быстро вырасти до миллиарда солнечных масс вскоре после Большого Взрыва. При нормальных условиях газ по спирали стягивается к черной дыре, образуя диск аккреции. Некоторое количество газа стекает внутрь, но обычно есть процессы, которые замедляют рост черной дыры.

Ученые считают, что в юной Вселенной были поток холодного газа, более плотные, чем сегодня. Юная черная дыра могла двигаться быстрее, постоянно меняя направление, подобно младенцу Pac-Man, пожирая юные звезды вокруг. Быстрые изменения направления могли привести к тому, что черная дыра поглощала материал прямо из плотных газовых потоков так быстро, что ее рост не замедлялся. Чем старше становилась черная дыра, тем быстрее она насыщалась. В пределах относительно недолгих 10 миллионов лет, черная дыра могла вырасти с 10 солнечных масс до 10 000. Затем рост замедлился. Но путь к массе в миллиард солнечных масс был уже проложен.

Черные дыры мешают образованию звезд





Ученые обнаружили, что массивные черные дыры в зрелых галактиках могут мешать развитию юных звезд, извергая частицы, испускающие радиоволны. Путешествуя почти с околосветовой скоростью, эти нагретые джеты действуют как выключатели, не давая газу в галактике охлаждаться и конденсироваться в новые звезды. Ученые не знают, почему центральные черные дыры в старых и часто эллиптических галактиках начинают испускать эти частицы.

До недавнего времени ученые полагали, что центральные черные дыры виноваты в наличии «красных и мертвых галактик», состоящих только из старых звезд. Но затем они обнаружили несколько компактных и юных галактик, которые умерли преждевременно. Эти юные галактики обладают массой Млечного Пути, втиснутой в относительно небольшую площадь.

На основе своих исследований команда астрономов решила, что эти звезды ответственны за активацию собственного выключателя в юных галактиках. Вспышка звездообразующей активности началась со столкновения двух богатых газом галактик, которые привезли много холодного газа в компактный центр слияния галактик. Затем энергия бешеной активности могла выбить весь оставшийся газ, что привело к отмене будущего образования звезд. Также возможно, что газ в этих галактиках просто стал слишком горячим, чтобы охладиться и сконденсироваться в новые звезды.

«Глаз Саурона» показал, что черные дыры весят больше





Сейчас астрономы думают, что сверхмассивные черные дыры в центрах галактик весят на 40% больше, чем предполагалось изначально. Это также может объяснить, почему предел Эддингтона не работает в некоторых расчетах массы.

Ученые использовали наземную технику для измерения дистанции до галактики NGC 4151, активное ядро которой называют «Глазом Саурона», поскольку оно похоже на одноименный объект из фильма «Властелин колец». Прежнее измерение расстояния от Земли до NGC 4151, точнее до ее центральной черной дыры, оценивалось в 13-95 миллионов световых лет. С помощью телескопов Кека на Гавайях удалось добиться 90-процентной точности измерений. Черная дыра NGC 4151 активна, поглощает ближайший газ и испускает рентгеновский свет. Ультрафиолетовое излучение нагревает диск пыли, вращающийся вокруг черной дыры. Через 30 дней пыль начинает излучать инфракрасную радиацию. На основе этого времени и скорости света ученые рассчитали расстояние от черной дыры до пылевого диска. Дальнейшие расчеты показали, что до «Глаза Саурона» приблизительно 62 миллиона световых лет. На основе этих расчетов и техники ученые теперь могут более точно вычислить массу сверхмассивных черных дыр.

Объяснить полет шмелей





До недавнего времени исследователи гравитации в большинстве своем предполагали, что пространство-время не может быть турбулентным. Но это мнение оказалось ошибочным, когда ученые решили проверить, может ли гравитация вести себя подобно жидкости. При определенных условиях жидкости турбулентны. Они могут закручиваться и завихряться.

Ученые решили проверить свою догадку на примере быстровращающейся черной дыры. Пространство-время вокруг такой дыры менее вязкое, что увеличивает шанс на появление турбулентности, по аналогии с любой легкой жидкостью. Результаты удивили всех.

«За последние несколько лет мы прошли путь от серьезных сомнений по поводу того, что гравитация может быть турбулентной, до почти полной уверенности в том, что да, может», — говорит ученый Луис Ленер.
Очень скоро новые детекторы позволят фиксировать гравитационные волны, рябь в пространстве-времени, которая ведет себя подобно волнам в океане, когда по нему плывет корабль. В космосе гравитационная жидкость может покрываться рябью вследствие мощных космических событий вроде слияние двух черных дыр. Также эти исследования могут помочь в исследовании турбулентности на Земле — включая физику ураганов, влияние ветра на самолеты и совершенно невозможного на первый взгляд полета шмелей.

Криминальный секрет галактического центра





Некоторые астрономы полагают, что в космосе есть что-то криминальное в превращении пульсаров в небольшие черные дыры. Они называют это «проблемой недостающих пульсаров». Как мы помним, пульсары — это вращающиеся нейтронные звезды (остатки звезды, которая была слишком маленькой, чтобы стать черной дырой), которые испускают радиацию с магнитных полюсов, подобно маяку. С таким обилием звезд в нашей галактике хотя бы 50 мертвых звезд должны стать пульсарами в центре Млечного Пути. Но астрономы смогли найти только один.

Есть несколько возможных объяснений, но самое интересное включает черную материю. Как и черные дыры, темная материя невидима и может быть зафиксирована только по гравитационному влиянию на другие объекты в космосе.

Несколько ученых предположили, что гравитация пульсара может притягивать определенных частицы темной материи, в результате чего пульсар «разбухает» до такого размера, что коллапсирует в черную дыру. Пульсары становятся настолько большими, что пробивают дыру в ткани пространства-времени и исчезают.

«Темная материя не может собираться так плотно или так быстро в центрах обычных звезд, — говорит ученый Джозеф Браманте. — Но в пульсарах темная материя может собираться в 2-метровый шар. Затем этот шар коллапсирует в черную дыру и засасывает пульсар».
Некоторая темная материя также может совмещать материю и антиматерию в частице. Такие частицы уничтожают друг друга при контакте. Ученые считают, что только асимметричные частицы темной материи (содержащие только материю или антиматерию) могут накапливаться в ядре пульсара с течением времени. Поскольку в галактических ядрах присутствует большая концентрация темной материи, это может объяснить, почему пульсаров недостает в центре нашего Млечного Пути.

Вселенная могла родиться из четырехмерной черной дыры





Одна из больших проблем, связанных с теорией Большого Взрыва, заключается в том, что наша научно предсказуемая Вселенная произошла из сингулярности, бесконечно плотной точки, для которой эти правила научной предсказуемости не работают. Физики просто не понимают сингулярности. Они не могут объяснить и что вызвало Большой Взрыв. Некоторые физики вообще считают маловероятным, что такое хаотичное начало произведет Вселенной с относительно однородной температурой.

Три ученых из Института Периметра предложили новую теорию, которая математически обоснована и вполне проверяема. Они утверждают, что наша Вселенная стала результатом жестоко выброшенного материала в процессе смерти четырехмерной звезды, внутренние слои которой коллапсировали в черную дыру. В нашей вселенной трехмерная черная дыра обладает двухмерным горизонтом событий, точкой невозврата для всего, что попадает в пределы черной дыры.

Во Вселенной с четырьмя пространственными измерениями четырехмерная черная дыра обладала бы трехмерным горизонтом событий. Наша вселенная, выброшенный материал сверхновой, образовала бы трехмерную мембрану вокруг трехмерного горизонта событий. Эта мембрана растет, мы называем этот рост космическим расширением. Наша трехмерная вселенная должна была унаследовать однородность родительской четырехмерной вселенной, если последняя существовала бы долгое время. Если мы считаем эту теорию абсурдной, ученые парируют, уверяя нас в том, что мы просто не понимаем четырехмерную вселенную. Возможно, наше трехмерное мышление представляет собой только верхушку айсберга реальности.

По материалам listverse.com

Источник: hi-news.ru

Может ли темная материя быть операционной системой Вселенной

Поделиться







Вопрос сложный, но однозначно интересный. Том Бродхерст, ученый из отделения теоретической физики UPV/EHU, думает, что да. Вместе с учеными из Национального университета Тайваня, он предложил новое объяснение образованию галактик и структур во Вселенной. Работа была опубликована в журнале Nature Physics, а ее выводы контрастируют со свежими данными, предоставленными космическим телескопом Хаббл.

В космологии, холодная темная материя — это форма материи, частицы которой движутся медленно по сравнению со светом и слабо взаимодействуют с электромагнитным излучением. Считается, что только ничтожно малая часть материи во Вселенной является барионной материей, из которой образовались звезды, планеты и живые организмы. Остальное (больше 80%) представлено темной материей и энергией.

Теория холодной темной материи помогает объяснить, как развивалась Вселенная из своего первоначального состояния до нынешнего распределения галактик и скоплений, структуры Вселенной на больших масштабах. В любом случае эта теория не может удовлетворительно объяснить некоторые наблюдения. Однако последнее исследование Бродхерства и его коллег проливает новый свет на эту точку зрения.

Как объясняет сам исследователь, «руководствуясь начальным моделированием образования галактик в этом контексте, мы заново интерпретировали холодную темную материю как конденсат Бозе-Эйнштейна». Таким образом, «ультралегкие бозоны, образующие конденсат, делят одну квантовую волновую функцию, поэтому модели возмущений формируются на астрономических масштабах в виде крупномасштабных волн».

Эта теория позволяет предположить, что все галактики в этом контексте должны в своих центрах обладать крупными стационарными волнами темной материи — солитонами, что могло бы объяснить загадочное поведение ядер обычных карликовых галактик.

На изображении выше показано сравнение радиальных профилей плотности галактик, которые ученые отобразили с солитонами в центре каждой галактики и окружающим гало. Солитоны в меньших галактиках шире, но обладают меньшей массой.





На изображении слева снизу показано, что, если сравнить, распределение материи на крупных масштабах— между волнами темной материи — похоже на распределение материи с обычными частицами темной материи.

Изображение справа показывает, что в галактиках эта структура отличается в зависимости от интерпретации волны; исследование предсказывает, что солитон темной материи в центре окружен обширным гало темной материи в форме большого «пятна», которое представляет собой медленно флуктуирующие плотные волны. Такое предположение должно решить проблему ядер малых галактик.





Исследование также позволяет предположить, что галактики в таком контексте образовались относительно поздно, если сравнивать с интерпретацией с учетом стандартных частиц холодной темной материи. В данный момент команда ученых сравнивает свои прогнозы с наблюдениями, сделанными космическим телескопом Хаббл.

Результаты могут быть весьма интересными. Не исключается возможность того, что темная материя может быть очень холодной квантовой жидкостью, которая управляет формированием структур по всей Вселенной.

Источник: hi-news.ru

Темная материя вызывает катаклизмы на Земле

Поделиться







Массовые вымирания и огромные геологические изменения на Земле являются результатом воздействия темной материи. К такому выводу пришел ученый из США. По его словам, прохождение нашей планеты по галактическому диску и сквозь него вызывает различные катаклизмы. Исследование было опубликовано в «Заметках королевского астрономического общества».

Профессор биологии Майкл Рампино из Нью-Йоркского университета объясняет регулярные геологические сдвиги и случаи массового вымирания – например, уничтожение динозавров в результате столкновения с астероидом – прохождением Земли через сгустки темной материи.

Предыдущие исследования показали, что Земля вращается вокруг центра Галактики, совершая один оборот раз в 250 миллионов лет. Планета движется по волнистой траектории, пересекая галактический диск каждые 30 миллионов лет.

Галактический диск представляет собой плоскость Млечного Пути. Кроме множества звезд, облаков газа и пыли, в нем содержится высокая концентрация темной материи – неуловимых субатомных частиц, образующих около 27 процентов Вселенной.

Проанализировав движение Земли по Галактике, Рампино обнаружил, что встречи с темной материей совпадают с кометным воздействием и массовым вымиранием видов. Исследователь считает, что темная материя в этих участках галактики меняет орбиты комет, которые обычно находятся далеко от Земли. В результате часть комет начинает сближаться с нашей планетой.

Кроме того, по словам ученого, темная материя может накапливаться в ядре Земли. Аннигиляция частиц темной материи приводит к выделению значительного количества тепла, что может вызывать извержение вулкана, разворот магнитного поля или изменение уровня моря. Это может быть объяснением геологических событий, которые происходят на нашей планете каждые 30 миллионов лет.

Результаты исследования показывают, что циклы геологической и биологической эволюции на Земле частично подчиняются ритмам Галактики. Ученый считает, что его работа изменит наше понимание развития Земли.

опубликовано 

Источник: hi-news.ru

Внутри Солнца, возможно, скапливается темная материя

Поделиться







Ученые заявили, что внутри Солнца скрывается темная материя. Новая теория гласит, что светило впитывает в себя частицы вещества из центра Млечного пути. Накопленные частицы темной материи, которые нельзя наблюдать напрямую, влияют на процессы внутри звезды нашей планетной системы.

Теорию выдвинули ученые из Даремского университета в Великобритании. Они считают, что так называемая ассиметричная темная материя может объяснить некоторые несоответствия в стандартной солнечной модели, по которой была успешно рассчитана плотность и температура солнечного вещества. Измерить продольные волны внутри звезды по ней оказалось гораздо сложнее.

Температура поверхности Солнца составляет около 6 тысяч градусов по Кельвину, в то время как в ядре она достигает около 15 миллионов. Волны сжатия образуются в результате процессов на поверхности Солнца. Они не особо отличаются от компрессионных волн, производимых во время землетрясения.





Ранее было высказано предположение, что темная материя из различных уголков галактики оказывает влияние на активность и строение Солнца.

Как пишет Daily Mail, темная материя попадает в гравитационную ловушку звезды и не может выбраться из нее из-за недостаточного количества антивещества. Это означает, что темная материя не разрушается при взаимодействии с другой материей. В итоге количество темной материи внутри Солнца постоянно увеличивается. Накопленное вещество может оказывать на звезду еще больший эффект, чем считалось ранее.

Ученые предполагают, что частицы темной материи поглощают энергию в самых горячих, центральных участках ядра. Затем они мигрируют в другие места на Солнце. Все это ведет к уменьшению центральной температуры и перемещению тепла.

Тот же самый эффект ведет к уменьшению скорости термоядерного синтеза. Поэтому для поддержания постоянной светимости Солнцу приходится подкачивать в ядро дополнительный водород. В результате происходит уменьшение давления в направлении к солнечной поверхности.

Ученые говорят, что для того, чтобы доказать, что в действительности происходит внутри Солнца, потребуется найти стабильную частицу темной материи, взаимодействующую с обычной материей. Они надеются, что такая частица, если она существует, будет найдена при следующем запуске Большого адронного коллайдера или прямом наблюдении темной материи.

Структурные изменения в ядре, по словам исследователей, нарушают баланс между гравитацией и давлением. Это объясняет несовпадение теоретических расчетов с наблюдениями волн на Солнце.опубликовано 

Источник: hi-news.ru