Реальность квантовой странности

Поделиться



Вы действительно верите, что Луна существует лишь когда вы смотрите на неё?

 

Этот известный вопрос Альберта Эйнштейна аккумулирует в себе как суть продолжающихся уже сотню лет научных дебатов по поводу проблемы измерений, так и сущность самой природы волновой функции.
 





В фильме Акиры Куросавы «Расёмон» самурая убивают, но из фильма так и не понятно кто и почему? Различные вовлечённые в историю персонажи рассказывают свои версии этих событий, но все их свидетельства противоречат одно другому. И в результате вы остаётесь в сомнениях: Какая же из этих историй правда?

Но сам этот фильм заставляет вас задуматься также о другом, более глубоком вопросе:

«Существует ли вообще истинная история или вся наша вера в определённую, объективную, независящую от наблюдателя реальность является иллюзией?»

Опубликованная в журнале Nature Physics статья предоставляет новые экспериментальные данные, поддерживающие последний сценарий — о существовании «Расёмон-эффекта» не просто в наших описаниях природы, но и в самой природе.

За прошедшие сто лет, многочисленные эксперименты над элементарными частицами перевернули и поставили с ног на голову всю классическую парадигму причинной, детерминистской вселенной.

Возьмём, к примеру, так называемый эксперимент с двумя щелями. Мы стреляем пачкой элементарных частиц — скажем, электронов — в экран, способный регистрировать их удар. Но перед экраном мы помещаем частично проходимое препятствие: стену с двумя тонкими параллельными вертикальными щелями. Мы смотрим на результирующий рисунок электронов, появляющийся на экране. И что же мы видим?

Если бы электроны были подобны маленьким шарикам (во что заставляла верить нас классическая физика), тогда каждый из них проскакивал бы через одну из щелей, а мы при этом увидели бы на экране две отдельные полосы, каждая за своей щелью. Но на самом деле видим мы нечто совершенно другое: интерференционную картину, как если бы две волны сталкивались, создавая рябь на воде.

И что удивительно, то же самое происходит, если мы начинаем выстреливать электроны по очереди — что говорит о том, что каждый электрон неким образом действует подобно волне, интерферируя сам с собой, как если бы он проходил через обе щели одновременно.

То есть, электрон — это волна, не частица? Не спешите с выводами. Поскольку, когда мы помещаем у щелей приборы, которые «метят» электроны в соответствии с той щелью, через которую они проходят (что позволяет нам узнать их местонахождение), интерференционный паттерн исчезает. Вместо этого, мы видим на экране две классические полосы, как будто наши электроны, внезапно осознав, что за ними наблюдают, решили вести себя как приличные маленькие шарики.

Чтобы проверить эту их приверженность к тому, чтобы вести себя подобно частицам, мы можем метить их также при прохождении через щели — но после этого, используя другой прибор, стирать эти метки до того, как электроны ударятся об экран. Если мы делаем это, то электроны вновь возвращаются к своему волноподобному поведению, и интерференционный рисунок чудесным образом снова проявляется.

Нет конца различным практическим шуткам, которые мы можем разыгрывать с бедным электроном! Но с усталой улыбкой, он всегда при этом смеётся над нами в ответ. Электрон представляется нам странным гибридом волны и частицы, про который нельзя сказать ни что он здесь и там, ни что он здесь или там. Подобно хорошо подготовленному актёру, он играет ту роль, которую был призван исполнить. Как будто всем своим существованием он решил доказать нам верность известной максимы епископа Джорджа Беркли:«Быть — значит быть воспринимаемым».

Действительно ли природа настолько странная? Или это просто кажущаяся странность, являющаяся отражением нашего несовершенного знания о природе?

Ответ зависит от того, каким образом вы будете интерпретировать уравнения квантовой механики — математической теории, разработанной для описания взаимодействия элементарных частиц. Успешность этой теории не имеет себе равных. Её предсказания, какими бы «жуткими» они ни казались, всегда проверялись и подтверждались наблюдениями с поразительной точностью. Она стала также основой для замечательных технологических достижений. Так что это действительно мощный инструмент. Но является ли он также отражением картины реальности?

В этом смысле, одним из самых больших вопросов здесь является интерпретация так называемой волновой функции, описывающей состояние квантовой системы. Для отдельной частицы, такой как электрон, волновая функция даёт информацию о вероятностях наблюдения данной частицы в определённых местах, также как вероятностях результатов других измерений, которые вы можете проделать над данной частицей, например, измерения её импульса.

Соответствует ли непосредственно эта волновая функция некой объективной, независящей от наблюдателя физической реальности или может быть она просто представляет собой частичное знание наблюдателя об этой реальности?

Если волновая функция основана на знании, то вы можете дать оправдание странным квантовым феноменам, сказав, что подобные вещи лишь представляются нам таким странным образом, поскольку наше знание реального состояния дел является недостаточным.

Однако новая статья из журнала Nature Physics даёт убедительные доказательства того, что это не так. Выводы статьи основываются на результатах экспериментов, использовавших пучки специально подготовленных фотонов для проверки определённых статистических свойств квантовых измерений. Если объективная реальность вообще существует, то статья как раз наглядно демонстрирует, что волновая функция основывается всё-таки не на знании, а на реальности

То есть, выводы этого исследования подразумевают, что мы не просто слышим разные «истории» об электроне, лишь одна из которых истинная. Скорее, действительно существует одна истинная история, но она содержит в себе множество граней, кажущихся противоречащими друг другу, точно также как и в фильме «Расёмон». Так что, действительно мы не сможем уже вырваться из этой загадочной  — как некоторые скажут, мистической — природы квантового мира.

Но что всё это значит для нас (если действительно что-то значит) в отношении нашей собственной жизни? Мы должны быть здесь аккуратными в выводах, осознавая, что вся эта странность квантового мира не подразумевает напрямую наличия того же рода странности в мире нашего повседневного опыта. Причина в том, что как известно, вся эта туманная квантовая странность индивидуальных элементарных частиц быстро рассеивается в больших ансамблях частиц (феномен, который часто называют «декогеренцией»). Именно поэтому мы фактически и можем описывать объекты вокруг нас на языке классической физики.

Думаю, нам, скорее, стоит рассматривать все эти парадоксы квантовой физики в качестве метафоры, указывающей на неизвестные бесконечные возможности нашего собственного существования.

Очень уместно и элегантно эта идея выражена в Ведах:

«Каков атом, такова и вселенная; каков микрокосм, такой же и макрокосм; каково человеческое тело, такое и тело космическое; какова человеческая мысль, такова и мысль космическая».опубликовано

 

Автор: Edward Frenkel

 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Источник: larkin-donkey.livejournal.com/211489.html#cutid1

Квантовая телепортация

Поделиться



Человеческое сознание с точки зрения квантовой теории

Поделиться



Благодаря работе небольшой группы неврологов и физиков-теоретиков за последние несколько лет, мы можем, наконец, найти способ анализа таинственного и метафизического царства сознания на научной основе. Последний прорыв в этой новой области озвучил Макс Тегмарк из Массачусетского технологического института. Ученый утверждает, что сознание на самом деле представляет собой состояние материи.

«Подобно тому, как существует много видов жидкости, существует много типов сознания», — говорит он. С помощью этой новой модели Тегмарк утверждает, что сознание может быть описано в терминах квантовой механики и теории информации, что позволит нам научно рассматривать такие загадочные темы, как самосознание, и почему мы воспринимаем мир в классических трехмерных терминах, а не как бесконечный ряд объективных реалий, предлагаемых до возникновения многомировой интерпретации квантовой механики.
Сознание всегда было непростым вопросом для научного обсуждения. В конце концов, наука имеет дело с эффектами, которые можно наблюдать и описать математически, а сознание до сих пор успешно уклонялось от такого подхода. В большинстве серьезных научных кругов простое упоминание сознания может привести к немедленному изгнанию в сферу шарлатанов и оккультистов.

Очевидно, что сознание — или сущность, или душа, или что бы там ни было, что делает человека человеком — как тема для обсуждений никуда не девается. Нам ужасно приятно думать, что сознание выбрало людей в качестве единственного места для резервации, но эволюция вручила нам большие думающие мозги, поэтому мы обязательно должны использовать наше сознание для того, чтобы понять, что такое это сознание.

Последние попытки формализовать сознание предпринимал Джулио Тонони, профессор из Университета Висконсин-Мэдисона, предложивший теорию интегрированной информации (IIT), а теперь и Макс Тегмарк из MIT, который попытался обобщить работу Тонони с точки зрения квантовой механики. В своей научной работе «Сознание как состояние вещества» (arXiv.org) Тегмарк предположил, что сознание можно рассмотреть как состояние вещества под названием «перцептрониум», которое может быть дифференцировано от других видов материи (твердых, жидких, газообразных) с использованием пяти математически обоснованных принципов.



Если коротко, теория берет за основу IIТ Тонони — сознание является результатом системы, которая может накапливать и эффективно использовать информацию — и ведет ее к перцептрониуму, определяемому как «общая субстанция, которая субъективно самоощущаема». 

Эта субстанция не только может накапливать и использовать данные, но также является неделимой и единой. Большая часть работы описывает перцептрониум в терминах квантовой механики и рассматривает, почему мы воспринимаем мир в терминах классических независимых систем, а не в терминах одной большой взаимосвязанной квантовой мешанины. На этот вопрос, в частности, у Тегмарка ответа нет.

Работа Тегмарка не доходит до пункта, где мы можем ответить на вопрос, что вызывает или создает сознание, но проделанный путь свидетельствует о том, что сознание определяется теми же законами физики, что управляют и остальной Вселенной.

Источник: brainswork.ru

Физики связали корпускулярно-волновой дуализм и принцип неопределенности

Поделиться







Приятный сюрприз: квантовая физика менее сложна, чем кажется. Международная команда ученых доказала, что две своеобразных особенности квантового мира, которые ранее считались разными, оказались различными проявлениями одного и того же. Результаты работы были опубликованы 19 декабря в Nature Communications.

Патрик Коулз, Жедржей Канивски и Стефани Венер пришли к своим выводам, работая в Центре квантовых технологий Национального университета Сингапура. Они обнаружили, что «корпускулярно-волновой дуализм» — это просто замаскированный квантовый «принцип неопределенности», сведя две загадки в одну.

«Связь между неопределенностью и корпускулярно-волновым дуализмом оказывается вполне естественной, когда вы подразумеваете под ними вопросы о том, какую информацию можете получить о системе. Наш результат подчеркивает силу мышления в физике с точки зрения информации», — говорит Венер, нынче доцент квантовой механики в Университете Делфта в Нидерландах.

Это открытие углубляет наше понимание квантовой механики и может породить поток идей для новых применений корпускулярно-волнового дуализма.

Корпускулярно-волновой дуализм — это идея о том, что квантовый объект ведет себя как волна, но волновое поведение исчезает, если вы пытаетесь обозначить место объекта. Лучше всего он проявляет себя в эксперименте с двумя щелями, когда единичные частицы, скажем, электроны, пропускают через экран с двумя узкими щелями. Частицы образуют интерференционную картину на задней стенке за щелями, даже если их выпускать по одиночке, но если ученые пытаются проследить, через какую щель пролетают частицы, они попадают только в одно место. Возникает ощущение, что частицы дурачат нас, запрещая нам подглядывать, как они творят свою волновую магию.

Принцип квантовой неопределенности — это идея того, что невозможно точно знать две вещи о частице одновременно. К примеру, чем точнее вы знаете положение атома, тем менее точно вы можете определить скорость, с которой он движется. Это ограничение лежит в основе самой природы и не зависит от качества измерений. Новая работа показывает, что количество информации, которое вы можете узнать о волновом поведении частицы (а не о точечной частице) в системе, ограничено ровно настолько же, насколько позволяет принцип неопределенности.

Корпускулярно-волновой дуализм и принцип неопределенности были фундаментальными концепциями квантовой физики с 1900-х годов.





«Мы нутром чуяли, и только нутром, что между ними должна быть связь», — говорит Коулз.

Есть возможность записать уравнения, которые показывают, как много можно узнать о паре свойств, вытекающих из принципа неопределенности. Коулз, Канивски и Венер — эксперты в видах таких уравнений, которые известны как «энтропийные соотношения неопределенностей» — обнаружили, что вся математика, которая раньше описывала корпускулярно-волновой дуализм, может быть переписана в терминах этих соотношений.

«Мы будто бы обнаружили «розеттский камень», который объединил два разных языка, — говорит Коулз. — Литература корпускулярно-волнового дуализма была иероглифами, которые мы теперь можем перевести в родной язык. У нас было несколько моментов с «эврика!», когда мы наконец поняли это».

Поскольку энтропийные соотношения неопределенностей используются в сфере квантовой криптографии — схемах шифрования с использованием квантовых частиц — ученые предполагают, что их работа вдохновит инженеров на создание новых протоколов шифрования.

В более ранних работа Венер и коллеги нашли связь между принципом неопределенности и другой физикой — квантовой «нелокальностью» и вторым законом термодинамики. Следующей целью исследователей будет осмысление того, как эти части пазла можно собрать воедино и образовать общую картину строения природы.

Источник: hi-news.ru

9 самых странных следствий многомировой интерпретации

Поделиться







Согласно многомировой интерпретации квантовой физики, мы живем в бесконечной сети альтернативных вселенных. Это серьезное заявление, которое несет определенные и крайне серьезные научные, философские и экзистенциальные последствия. Давайте рассмотрим десять из них.

Согласно гипотезе создателя многомировой интерпретации квантовой механики Хью Эверетта, мы живем во Вселенной, точнее в мультивселенной, в которой постоянно рождается и ответвляется множество последовательных миров, в каждом из которых присутствует другая версия вас.

Квантовые физики использовали многомировую интерпретацию, чтобы устранить неприятный недостаток копенгагенской интерпретации, а именно утверждение, что ненаблюдаемое явление может существовать в двух состояниях. То есть вместо того, чтобы утверждать, что кот Шредингера одновременно жив и мертв, многомировая интерпретация гласит, что кот просто «разветвился» в разных мирах: в одном он жив, в другом мертв.

Спустя 60 лет после своего представления, многомировая интерпретация остается довольно спорным вопросом. В опросе 2013 года, проведенном среди квантовых физиков, только пятая часть указала, что приветствует многомировую интерпретацию (для сравнения: копенгагенской интерпретации придерживается 42% физиков). Тем не менее среди сторонников мультиверса есть весьма именитые ученые из области квантовой физики — Дэвид Дойч, Скотт Ааронсон, Шон Кэрролл.

Независимо от того, в каком состоянии пребывает эта теория, крайне интересно размышлять о ее последствиях.

Мы живем в мультивселенной гигантских размеров

Космологи принимают факт того, что наблюдаемый нами мир один, как сам собой разумеющийся. Размышления о множественной вселенной долгое время считались научной ересью, но вероятность того, что это правда, растет все больше и больше. Физики и метафизики, космологи, антропологи, квантовые фанатики — все начинают задумываться об этом.

Основным утверждением многомировой интерпретации является то, что все сущее состоит из квантовой суперпозиции невообразимо большого — или бесконечного — числа вселенных. Если эта интерпретация является верной, должно быть совершенно поразительное количество альтернативных миров.

Цельность вашей жизни —иллюзия

ММИ также нарушает наше представление о личности. Мы все воспринимаем свою жизнь как единое и цельное путешествие через пространство и время. В действительности мы представляем собой экспоненциально растущий набор событий, которые разветвляются от момента к моменту. В результате мы должны думать о себе не как о личности, а как о дробной части.

Причина этой иллюзии в том, что множественный опыт пережить невозможно, поэтому мы остаемся с осознанием того, что мы — один человек. Но это не означает, что наш опыт реальности подлинный или реальный. Мы должны признать — посредством ММИ — что наши жизни не являются в точности такими, какими кажутся.

Существует множество версий вас

Если ММИ верна, существует практически бесконечное (или бесконечное) количество ваших версий, каждая из которых воспринимает мир как отдельная личность и не знает о существовании других версий. Следовательно, сам объем альтернативных жизненных путей чрезвычайно велик. С самого рождения вы — или то, что вам кажется вами — разветвлялись в разных мирах. Полный набор вас — это массивная корневая система, которая разрастается экспоненциально, и каждый корень представляет новую жизнь.

Поскольку ММИ подразумевает постоянную изменчивость, зависимость от вероятностей, каждый новый экземпляр вас должен быть отличным, наблюдая мир, в котором произошел альтернативный исход событий вашей жизни. Следовательно, существуют миры, в которых вы до сих пор живете с бывшими, являетесь более или менее успешным, уже умерли или пережили смерть близких, которые живы в настоящем мире. Могут существовать даже злобные версии вас, где вы террристы или убийцы. Возможности практически безграничны, пока не нарушаются основы физики.

У вас все еще есть свобода воли

Учитывая, что все возможные решения будут приниматься различными версиями вас, ММИ довольно трудно объяснить вопрос свободы воли. Если все варианты выбора уже сделаны в альтернативных мирах, зачем тогда проходить через все неприятности, взвешивая все за и против, принимая решения? Коллективная судьба ваших альтер-эго уже предопределена, выбор сделан за вас.

Эксперт ММИ Майкл Клайв-Прайс указывает, что хотя все решения уже приняты, некоторые принимаются чаще остальных. Другими словами, каждая ветвь решения обладает собственным «весом», который влияет на обычные законы квантовой статистики.

Кроме того, ММИ означала бы определенный недетерминизм бытия, хотя и неинтуитивным образом. Всякий раз, когда мы задаемся вопросом: «Мог ли я принять другое решение или поступить иначе?», ММИ отвечает, что да, конечно. И не только вы, но и альтернативная версия вас тоже могла. А вот почему вы выбрали этот вариант, добились тех или иных результатов, все это сводится к влиянию квантовых событий на классические объекты — в том числе и на размышления в вашей голове.

Где-то там могут существовать крайне странные миры

ММИ обязательно приводит к весьма странным возможностям. Опять же, все точки разветвления возможны ровно до тех пор, пока вы не нарушаете законы физики. Важно отметить, однако, что учитывая весь объем всевозможных миров, более вероятно, что вы окажетесь в наиболее возможном и рациональном из миров, поскольку они возникают с высокой частотой.

Но есть и миры, в которых происходят крайне странные вещи. К примеру, кто-то подбрасывает монетку 1000 раз, и вместе с этим возникает мир, в котором он выбрасывает решку 1000 раз подряд.

Также существуют миры, в которых кто-то будет угадывать абсолютно все прогнозы спортивных матчей. Миры, в которых человек без музыкального образования, впервые увидев фортепиано, сыграет 3-й фортепианный концерт Рахманинова, как сыграл бы сам маэстро. Шансы, однако, такого события ничтожно малы и выходят за пределы астрономических вероятностей, хотя, конечно, в числе бесконечно возможных вариантов имеются.

Впрочем, именно этот пункт скептики выделяют как самый острый, сводящий рациональность ММИ к минимуму.

Вы в некотором роде бессмертны

Этот мысленный эксперимент называется «квантовое самоубийство». Представьте себе ситуацию, в которой человек играет в русскую рулетку, в которой полбарабана револьвера заложено пулями. В такой суперпозиции каждый поворот барабана будет сбрасывать шансы на самоубийство человека до 50/50. Но ММИ говорит нам, что должен быть мир, в котором человек никогда не застрелит себя даже после 50 поворотов барабана. Хотя шансы, что это случится, стремятся к нулю, но где-нибудь это да должно произойти.

Что любопытно, физик Макс Тегмарк говорит, что данный эксперимент может служить доказательством ММИ, только потребует смерти множества людей, прежде чем один счастливчик доберется до финиша.

Другой взгляд на квантовое бессмертие утверждает, что версия нас самих всегда должна существовать, чтобы наблюдать Вселенную. Пол Халперн, автор «кота Шредингера», выразил это так:

«Что такое выживание человека? Все мы — совокупность частиц, установленная квантовыми правилами на глубочайшем уровне. Если каждый раз, когда происходит квантовый переход, наши тела и сознания раскалываются, будут копии, которые переживают каждый возможный результат, в том числе и тот, который определяет, жить нам или умереть. Предположим, что в одном случае конкретный набор квантовых переходов приводит к неправильному распределению клеток и вызывает смертельную форму рака. Для каждого перехода всегда будет альтернатива, которая не приводит к раку. Получается, всегда будут ветки с выжившими. Добавим к этому допущение, что наше сознание всегда будет пребывать только в живых копиях, и мы сможем выжить в любом числе потенциально опасных событий, связанных с квантовыми переходами».
Может быть возможной связь между параллельными мирами

В 1995 году квантовый физик Райнер Плага предложил экспериментально проверить ММИ, описав процедуру «межмирового» обмена информацией и энергией посредством «слабой связи».

С помощью стандартного квантово-оптического оборудования одиночный ион можно изолировать от окружения в ионной ловушке. Затем можно провести квантово-механическое измерение с двумя отдельными результатами на примере другой системы, тем самым создав два параллельных мира. В зависимости от результата, ион будет возбужден только в одном из этих параллельных миров, прежде чем произойдет декогеренция иона в процессе взаимодействия окружающей средой. Плага утверждает, что мы могли бы обнаружить это возбуждение в другом параллельном мире, что обеспечило бы ММИ доказательствами — и предоставило бы возможный способ послать весточку в параллельную реальность.

Никаких парадоксов путешествий во времени

Все просто: наличие альтернативных миров будет означать отсутствие единой шкалы времени, по которой можно перемещаться.

Если кто-то отправится назад во времени, это будет означать перемещение в совершенно новые временные парадигмы. Соответственно, в ММИ парадоксы вроде возвращения в прошлое и убийства дедушки просто не находят места.

Все уже случалось и снова случится

Самое интересное следствие из бесконечного числа миров заключается в том, что все уже произошло. Более того, произойдет еще и бесконечное число раз.опубликовано 

 

Источник: hi-news.ru

Квантовая физика и сознание человека

Поделиться





МЕНСКИЙ МИХАИЛ БОРИСОВИЧ —  доктор физико-математических наук, профессор, главный научный сотрудник Физического института им. Лебедева РАН.

« Если понять, что мы действительно приближаемся к глобальному кризису, то для спасения человечества большинство людей должно перейти к новому сознанию, альтруистическому. В этом, собственно, и заключается спасение мира.»— В настоящее время мы живем в ложном, постоянно ускоряющемся мире, когда сознание человека не успевает адекватно воспринимать происходящее и реагировать на него. Скажите, пожалуйста, с точки зрения концепции сознания в контексте квантовой механики можно ли объяснить все эти ускоряющиеся процессы?

Мир стал очень сложен и труден для тех, кто в этом мире живет, в частности, из-за того, что слишком много информации вокруг и слишком много событий на единицу времени. Жизнь не такая медленная, спокойная, как раньше — она «сумасшедшая». Поэтому психология человека играет сейчас большую роль, чем раньше. В контексте психологии очень важно, разумеется, понимать, что такое человеческое сознание. И здесь совершенно неожиданно оказалось, что новое слово может сказать квантовая механика или квантовая теория в целом, так как она позволяет взглянуть на сознание совсем не так, как это кажется единственно возможным, если мы не пользуемся концепцией квантовой механики.

Oчень важные аспекты сознания кажутся настолько странными, что многие люди считают, будто они вообще противоречат естественным наукам. Необычные свойства сознания, которые обычно называются мистическими, объясняются тем, что наш мир на самом деле квантовый.

Квантовый подход к феномену сознания, объяснение с точки зрения квантовой механики того, что такое сознание, не новы. Новым этот подход кажется потому, что лишь в последнее время его стали интенсивно изучать и развивать, хотя впервые он был предложен почти тогда же, когда произошло становление квантовой механики. Но только сейчас мы готовы к тому, чтобы осваивать наследие Юнга и Паули. Парадокс Эйнштейна-Подольского-Розена и теорема Белла показывают, что квантовый мир отличается от того, что мы себе представляем, если используем классическую физику, и каким он предстает нашей интуиции, и отличия эти радикальны. И теорема Белла, и парадокс Эйнштейна-Подольского-Розена это показывают. Особенно, если опираться на опыты Аспека.

Но как описать этот мир, чтобы учесть, не потерять, его квантовые свойства? В этом помогает интерпретация Хью Эверетта. В ней предполагается, что отличие квантового мира от классического можно описать следующим образом: квантовый мир многолик — у него много классических лиц или классических проекций. Таким образом, если посмотреть на квантовый мир с одной стороны, мы увидим одну классическую картину, если с другой – будет совершенно иная классическая картина.

Может ли быть, например, что сейчас небо, скажем, светлое – это одна картинка нашего мира, и небо в тучах – это другая картинка. А может ли быть состояние, которое включает в себя оба эти аспекта, то есть, является их суперпозицией? С точки зрения классической физики это бессмысленно, но поскольку наш мир квантовый, то это возможно.

— Что такое квантовая концепция сознания? Может ли человек, опираясь на эти знания, по-новому научиться воспринимать происходящие события?

Необходимо отметить два основных свойства сознания, которые удается объяснить в рамках концепции Эверетта: первое – сверхинтуиция, и второе — управление субъективной реальностью. Очень странные свойства, потому что, например, сверхинтуиция – это получение информации ниоткуда, то есть, получение такой информации о нашем мире, которую в сознательном состоянии получить нельзя.

В сознательном состоянии мы видим только одну классическую картинку мира и не способны видеть одновременно две. А на самом деле существует не только две, а огромное количество картинок, и они лишь в совокупности описывают квантовый мир полностью. Понятно, что из такой «базы данных», которая состоит из огромного количества классических картин, информации можно получить гораздо больше. А когда мы видим только одну картину, то есть, остаемся в сознательном состоянии, этой информации просто нет.

Так вот, сверхинтуиция – это способность проникнуть в квантовый мир как целое и получить информацию из всех классических картинок одновременно. А если мы мыслим в рамках одной картинки, в рамках одного классического мира, то нам кажется, что эта информация — ниоткуда, так как в этом «единственном» классическом мире этой информации нет и быть не может. Но, тем не мене, мы её получаем, потому что наш мир квантовый.

Как эту информацию получить? Физика указывает на то, что это возможно. Но представители некоторых восточных религий или восточных философий (например, йоги, буддисты и т.д.), давно научились это делать.

Это могут делать люди, прошедшие специальный психологический тренинг. И главным пунктом в этой тренировке является отключение нашего обыденного сознания, которое позволяет видеть окружающий мир в привычных образах (зрительных, тактильных, вкусовых и так далее) и поддерживать привычное мышление.

Необходимо отключить процессы привычного мышления, как бы сделать свое сознание пустым, и тогда возникает проникновение в квантовый мир. На самом деле, возможность проникновения в квантовый мир существует всегда, но яркая статическая картинка, которую мы видим перед собой, закрывает для нас «дверь» в квантовый мир, как целое, она не позволяет увидеть другие классические картинки. А вот если мы отключим свое сознание, тогда мы «увидим» другие картинки (сам механизм, позволяющий этого добиться – это психологическая практика.

Оказывается, в квантовом мире неизбежно должна быть информация помимо той, которую мы видим в своем сознательном состоянии. Эверетт допускает, что и макроскопически различимые состояния могут быть в суперпозиции. Что это значит? Значит, нельзя сказать, что мозг находится в том состоянии, которому соответствует первая картинка, или что он находится в состоянии, которому соответствует вторая картинка. Нет, он находится в суперпозиции, соответствующей обеим картинкам. На самом деле, в реальности их бесконечно много.

Для меня, для моего сознания, для моего восприятия другие люди – это внешние объекты, это часть того мира, который по отношению ко мне является внешним. Но вот, если мы всю цепочку проанализируем, перейдем к квантовому описанию всего этого, то придем к тому, что «на самом деле», то есть, в полном описании квантового состояния мира я как часть мира и весь мир — одно целое и неделимое. Сложно отследить логику на словах, но и все другие наблюдатели тоже, как часть мира, неотделимы друг от друга.

Таким образом, в состоянии, когда обычное сознание погашено, но вместо этого возникает доступ ко всем альтернативным классическим состояниям, то есть, к квантовому миру целиком, действительно, мир и я – это одно целое.

И здесь физика нас неожиданно приводит к очень давней философской концепции: «Микрокосм: весь мир внутри человека». Философия давно пришла к этому выводу, а физика приходит к этому довольно сложным путем. Но приходит к тому же самому. И это очень интересно.

-Если мир в восприятии условен, то почему все переживают кризис, и достаточно болезненно? Ведь все определяет желание человека…

Если исключить из рассмотрения человека, а взять просто обычную природу, включая живую природу: животных, растения и т.д. — то, как говорит религия, «всем управляет Бог». А когда возник человек, то он, в религиозной терминологии, «согрешил» и взял управление на себя, решив, что он сам может определить, где добро, где зло, вместо того, чтобы пассивно подчиняться Богу, который ему укажет, что хорошо, что плохо.

На самом деле в этом есть глубокая правда: в природе всё находится в равновесии. Если, скажем, животные поедают друг друга, то это только потому, что именно в этом состоит равновесие, то есть, для того, чтобы всё живое жило, необходимо, чтобы какие-то особи умирали, в частности, и за счет такого насилия. Но в этом равновесном мире, в мире природы, нет зла во имя зла или во имя себя лично. Скажем, если одно животное убивает другое, чтобы получить пропитание, то это понятно – ему нужно жить. Но оно никогда не убивает просто потому, что убить приятно – этого нет в природе. А среди людей появилось это, так сказать, зло, которое характерно для человека.

Если, скажем, волк убивает зайца, в каком-то смысле это для зайцев даже добро, так как известно, что волки убивают слабых животных, таким образом, выживают сильные зайцы, и тем самым улучшается популяция зайцев. В каком-то смысле это добро даже для зайцев, как ни странно.

А вот человек перестал руководствоваться этим принципом абсолютного добра — добра с точки зрения всего живого. Он руководствуется какими-то более узкими интересами: в предельном случае для него существуют «только его интересы», в более широком смысле — «интересы его семьи или его нации». Это всё равно очень узкие интересы. Подход является слишком ограниченным даже тогда, когда говорят об интересах всех людей, но при этом разрушают экологию, так что при этом страдает жизнь как таковая, то есть, всё живое, рассматриваемое как целое.

Переход к альтруистической идеологии, к альтруистическим принципам, когда принимаются во внимание интересы всего живого — это на самом деле насущная проблема человечества, и без этого оно не выживет. Оно выживет еще некоторое время, но в принципе, такой переход неизбежен.

Очень многое сейчас указывает на то, что человечество идет постепенно к глобальному кризису, который может привести мир к гибели. И если ничто не изменится, то этот кризис неизбежен.

Что же должно измениться, чтобы кризиса не было? Некоторые мыслители давно поняли, что должно измениться сознание людей. Сознание, то есть (я использую термин в данном случае в более широком смысле) принципы, которыми руководствуются люди, должно стать другими – альтруистическими. Вопрос только в том, как это сделать.

И вот здесь, как раз, квантовая концепция сознания может сказать нечто новое. Будем отталкиваться от того, что если всё останется в нынешнем состоянии, а сознание большинства людей, как и прежде — индивидуалистическим, то кризис неизбежен. Почему? Причина очень проста: материальные, технологические, технические средства качественно растут, а человеческие принципы остаются прежними, то есть, люди направляют эти огромные средства, которые иногда теперь оказываются в распоряжении даже отдельного индивида, на свое личное благо, а значит — во вред экологии и человечеству. Именно это приводит к кризису. Значит, чтобы не допустить кризис, нужно изменить сознание людей.

— Как люди могут перейти к альтруистическому сознанию?

Квантовая концепция сознания говорит о том, что человек обладает способностью к сверхинтуиции, то есть, он может увидеть то, что в обычной жизни не видит. Для этого ему погрузиться в такое состояние, в котором он просматривает все альтернативы. Тогда, как бы спонтанно, ниоткуда, ему приходит озарение, и это озарение. Это и есть абсолютная истина, и ошибки тут быть не может.

Разумеется, это справедливо и в моральных вопросах. Задаваясь вопросами о добре и зле, о том, что хорошо и что плохо, и погружаясь в такое состояние, человек познает истину: он найдет правильные ответы на эти вопросы, и, в какой-то мере, это поможет ему сделать правильный выбор.

Если понять, что мы действительно приближаемся к глобальному кризису, то для спасения человечества большинство людей должно перейти к новому сознанию, альтруистическому. В этом, собственно, и заключается спасение мира.

Человек должен внести свой посильный вклад в то, чтобы мир стал лучше, но не вся ответственность лежит на нём, и не вся ответственность лежит на других людях, потому что сама природа устроена так, что реализуется «лучший из миров». В этом, если говорить очень кратко, состоит принцип жизни, сама суть того, что такое жизнь с точки зрения квантовой физики. Мне не хотелось бы в этой беседе говорить подробно на эту тему, но, в некотором смысле, принцип жизни подразумевает нечто, что в религии понимается под словом «бог».

Рассмотрим «эвереттовские сценарии», то есть цепочки альтернатив, по одной для каждого момента времени. Жизнь — это совокупность сценариев с хорошим концом. Поэтому, если человек принадлежит «потоку жизни», то он принадлежит к одному из тех сценариев, которые, в общем, ведут к добру. Конечно, какие-то из них отклонятся и придут ко злу, но от человека зависит, чтобы он увидел именно те сценарии, которые ведут к добру. Само же существование этих хороших сценариев гарантировано.

— Как можно объяснить влияние людей друг на друга с точки зрения «Квантовой концепции сознания»?

До сих пор я рассуждал в терминах: я (человек) и окружающий мир. В окружающий мир включены, в частности, и другие люди, но это всё — вне меня. А что нам мешает, на самом деле, нескольких людей объединить и рассматривать их вместе, а всё остальное — как внешний мир? – Ничто не мешает. И в принципе, иногда эта концепция будет правильной, продуктивной. Она полезна, например, в том случае, если между людьми существуют очень глубокие связи — связи, заработанные в течение жизни: эти люди очень тесно общались между собой, объединены общими взглядами, действиями и так далее, — то есть, они единомышленники не по своим интересам, а по внутренним критериям. Тогда их можно рассматривать как своего рода сверх-организм, то есть, рассматривать не только индивидуально каждого (индивидуальности тоже будут), но и как некую общность. Теперь можно говорить о сознании этой общности людей. Всё, что я говорил до сих пор, приложимо уже к нескольким людям в целом.

Например, очень хорошая, дружная семья будет таким сверх-организмом; но это может относиться и к более широким общностям людей.

Можно, например, рассмотреть в качестве примера сверх-организмов сообщества буддистов, которые иногда устраивают общие молебны – собираются в большом количестве в какой-то местности и молятся за то, чтобы в этой местности был мир, чтобы прекратилась война. Считается, что это влияет на умиротворение. Это не обязательно неизбежно приводит к умиротворению, но это улучшает ситуацию.

— Почему человек, выбирая из двух альтернатив (добро и зло), в итоге выбирает «зло», и, собственно, оказывается в мире, в котором правит «зло» (эгоизм)?

Нам не повезло, мы живем в неблагоприятное для нашей страны время, и поэтому кажется, что слишком часто человек выбирает зло. Почему он его выбирает? По очень простой причине. Ему кажется, что выбрать зло для него выгодно, и в каком-то смысле это верно: выбирая зло, он получает преимущество мгновенно, сейчас, на короткое время, хотя, если посмотреть длительную перспективу, может быть, это обернется для него как раз неблагоприятными последствиями.

В таких государствах, которые имеют больший опыт рационального общественного устройства, в которых лучше организовано общество, люди более широко смотрят на мир, на свою судьбу. Они понимают, что если они нарушат порядок, ну, предположим, нарушат закон и получат преимущества сейчас для себя, то это не значит, что другие будут этот закон соблюдать. Если я его нарушаю, значит, существует большая вероятность, что другие тоже нарушают. А это для меня невыгодно. Невыгодно, чтобы все нарушали закон. Поэтому я тоже его не нарушаю.

Когда общество проходит достаточно долгий путь и имеет достаточно долгий опыт, а значит, уже многие люди понимают ситуацию должным образом, они, опять-таки, выбирают то, что для них выгодно. Но теперь для них выгодно другое — для них выгодно, чтобы все соблюдали порядок, а для этого надо, чтобы я сам тоже соблюдал порядок. Можно сказать так: в первом варианте человек считает себя исключением, а во втором — человек считает, что он такой же, как все, и наоборот — все остальные такие, как он. Чтобы все остальные были по отношению к нему хороши, он сам должен быть хорош по отношению к другим.опубликовано 

 

P.S. И помните, всего лишь изменяя свое сознание — мы вместе изменяем мир! ©

Источник: www.globosfera.info/2012/09/03/kvantovaya-fizika-i-soznanie-cheloveka/

Цвета и ароматы вашего микромира

Поделиться



Мои друзья – в большинстве своём типичные гуманитарии – не верят мне, когда я им рассказываю о такой штуке, как квантовая хромодинамика. Точнее, о тех выводах, которые из неё следуют.


Квантовая хромодинамика (КХД) — это о строении протонов и нейтронов, а вовсе не о переменах цвета, как может показаться из-за названия этого направления физики (греческое χρῶμα [хрома] — цвет). В 60–70-е годы прошлого века, когда и стала зарождаться эта область физики, возникла эдакая глобальная общечеловеческая дискуссия: кто же важнее — физики или лирики? Дискуссия закончилась ничем, но настроения физиков в те годы были весьма лиричными. Кто застал эти замечательные времена, наверняка помнят, сколько прекрасных поэтов и бардов вышло из стен физических вузов. Поэтому многие физические открытия тех лет несут отблеск романтических настроений своих авторов.

До 60-х годов протоны и нейтроны считались фундаментальными, неделимыми частицами, но затем стало понятно, что и они из чего-то состоят. Это что-то было названо словом «кварк». Первооткрыватели кварков заимствовали это название из романа культового ирландского писателя Джеймса Джойса «Поминки по Финнегану». Само слово (англ. — quark) считают звукоподражанием крику морских птиц. А фраза в романе звучит так: «Three quarks for Muster Mark!» На русский обычно переводится как «Три кварка для мюстера (искаженное мистер) Марка!» Роман к квантовой физике отношения не имеет, но именно из трех подчастиц состоит каждый протон или нейтрон, отсюда и идея назвать кварки кварками. Каждый кварк обозначен своим «цветом» . Но эти «цвета» не имеют никакого отношения к тому, что под цветом понимает всё остальное человечество: кварки значительно меньше длины световой волны и, следовательно, свет и цвет отражать не могут. В КХД «цвет» лишь условное обозначение одного из очень важных свойств кварков (грубо говоря, некоего аналога электрического заряда). Но кварки имеют и иные весьма примечательные свойства. Они бывают «верхними» и «нижними», «странными» и «очарованными», «прелестными» (или «красивыми») и «истинными». А ещё кварки обладают «ароматом». Все эти наименования, естественно, условны и отражают совершенно определенные физические характеристики, хорошо понятные лишь специалистам. Одним словом, кварки — истинные дети времени своего открытия.





Протоны. Это, естественно, схематическое изображение. На самом деле там всё непрерывно «кипит»

Всё это я рассказал так, к слову. Самое важное отнюдь не в этом. Напомню: всякий атом состоит из ядра и, как мы выяснили, электронного облака, где электроны находятся одновременно во всех разрешенных (по энергетическим уровням) состояниях. Ядро, в свою очередь, — из протонов и нейтронов, а те — из кварков. Самое же интересное в том, как это всё скрепляется: ведь те же протоны, например, имеют положительный заряд и должны, по идее, отталкиваться друг от друга. Но попробуйте вынуть хоть один из ядра стабильного элемента.

Современная физика выделяет четыре вида фундаментальных взаимодействий: электромагнитное, слабое (сегодня считается, что эти два — проявление в разных условиях одного и того же вида взаимодействия, которое называют электрослабым), а также сильное и гравитационное. Гравитационное — самый маломощный вид взаимодействия и на атомном и субатомном уровне чаще всего не учитывается вовсе. Так вот. Эти самые взаимодействия и отвечают за то, что разрозненные частицы собираются в единые комплексы, представляющие собой атомы, молекулы и всё то вещество, которое мы наблюдаем в мире.

Взаимодействия в квантовом мире происходят за счет обмена между фундаментальными частицами другим родом частиц — частицами переносчиками взаимодействий. Так, при электромагнитных взаимодействиях («плюс» притягивается к «минусу» или отталкивается от другого «плюса») электроны, протоны, кварки и другие частицы обмениваются безмассовыми фотонами. При слабом взаимодействии (оно действует только на микрорасстояниях) они обмениваются бозонами. Это уже частицы, обладающие массой, и при этом для субатомного мира довольно тяжелые. А при сильном взаимодействии между кварками в протонах и нейтронах происходит обмен частицами, называемыми глюонами. Их масса также нулевая.

Для того чтобы наглядно показать процесс взаимодействия в субатомном мире, физики прибегают к такого рода аналогиям. Допустим, по какой-нибудь реке движутся две лодки навстречу друг другу. В лодках две знакомые компании. И когда лодки поравнялись, с одной из них от полноты чувств перебросили своим друзьям бутылку шампанского. Но в этом случае из-за закона сохранения импульса обе лодки в какой-то степени изменят траектории своего движения, то есть провзаимодействуют. Или можно представить себе двух фигуристов, в ходе жанровой сценки обменивающихся на полном ходу ведром с водой. Совершенно очевидно, что обоим придется продемонстрировать в этот момент недюжинное мастерство, чтобы хотя бы устоять на ногах. (Эти примеры позаимствованы из энциклопедии Джеймса Трефила «Природа науки. 200 законов мироздания»).

Так как же организовано взаимодействие кварков между собой? Кварки имеют собственную массу. Очень небольшую. Но если три кварка объединяются в протон или нейтрон, их суммарная масса вырастает более чем в 60 раз! Почему так происходит? При взаимодействии между собой кварки производят частицы — переносчики взаимодействий глюоны (от англ. glue — клей, они как бы склеивают кварки друг с другом). Глюоны сами по себе не имеют массы. Но при взаимодействии с кварками и друг с другом они это самое взаимодействие материализуют: вокруг кварков образуется глюонное облако, которое уже приобретает массу. Замечательный пример эквивалентности энергии и массы: одно переходит в другое почти у нас на глазах (точнее, на глазах у физиков, которые наблюдают эти процессы в ускорителях элементарных частиц). Но, внимание! Откуда, собственно, берется эта энергия, которая затем превращается в массу? Ну, конечно же, всё из того же нуля, о котором мы говорим, начиная с первых статей, то есть из вакуума, а если точнее — из флуктуаций (спонтанных колебаний) вакуума. Причем колебания квантовохромодинамического вакуума, как это в данном случае называется, приводит к постоянному появлению и исчезновению виртуальных кварков и антикварков. Так что протоны и нейтроны (как и всё вещество в этом мире) существуют в известном нам виде лишь в среднем, а на самом деле постоянно превращаются то в одну, то в другую экзотическую частицу.

 




 

При этом если троицу кварков, образующих, допустим, протон, попробовать разорвать, одиночного кварка мы так и не получим. Во-первых, сделать это непросто потому, что в отличие от всего остального в этом мире, чем дальше кварки друг от друга, тем больше становятся связывающие их силы, причем силы огромные: «в покое» кварк притягивается к кварку где-то с силой в 14 тонн, и это при невероятно малых их размерах! И во-вторых, если вам всё-таки удастся выбить кварк из протона или нейтрона, то он оторвётся вместе с кусочком глюонного облака и тут же нарастёт кварк-антикварковой парой, что-то проаннигилирует, что-то, наоборот, добавится, всё это вместе превратится в одну из короткоживущих частиц (существующие миллионные, миллиардные доли секунды), которая, в свою очередь, распадётся на другие, более стабильные частицы, фотоны, например. Протон же, от которого этот кварк оторвали, тут же регенерирует: в нём будет восстановлен и недостающий кварк и кусочек глюонного поля взамен оторванного. И все эти превращения происходят, повторю, за счет энергии вакуума (если не считать той энергии, которая была затрачена на то, чтобы протон или нейтрон разорвать, и которая дала толчок всем этим последующим преобразованиям).





Возникновение кварк-глюонной плазмы на одном из ускорителей при столкновении ядер золота

Эта картина проверена-перепроверена во множестве экспериментов, и за работы в области КХД некоторые ученые уже получили Нобелевские премии.

Так что, уважаемые читатели (а особенно читательницы), когда вы в очередной раз подходите взвеситься, не волнуйтесь, и, взвесившись, не расстраиваетесь: на 98–99% вы измеряли, как там внутри вас происходят флуктуации вакуума. А на один с небольшим процент уточняли, всё ли в порядке с так называемым хиггсовским механизмом, который обеспечивает спонтанное нарушение симметрии всё того же вакуума. Благодаря последнему появляется масса у электронов и самих кварков. Таким образом, вся масса, а иными словами, всё вещество, образуется из энергии вакуума. Так стоит ли, взвесившись, расстраиваться из-за какого-то там вакуума?





Некоторые физики вполне серьёзно призывают отказаться от употребления термина «вакуум», так как он изначально предполагал пустоту. В то же время, как мы видим, никакая это не пустота, а тот самый нолик, который можно обозначить и так: 0 = (+ ∞) + (— ∞). То есть это ноль, содержащий бесконечность. Поэтому родился и широко используется такой физический термин как вакуумный конденсат, например: вакуумный конденсат хиггсовского поля; кварковый, глюонный вакуумный конденсат и т. п.

Строго говоря, нет ничего удивительного в том, что всё, что мы видим вокруг себя возникает из НИЧЕГО. Такая картина и должна наблюдаться в мире, созданном из ничего. Удивительно совсем другое: каким образом это возникновение чего-то из ничего столь очевидно упорядочено?

Флуктуации — вещь спонтанная. Напомню, что они следствие принципа неопределенности Гейзенберга, о чем мы говорили в третьей статье. И когда речь заходит о флуктуациях, сама собою напрашивается аналогия с атмосферной молнией. Молния — родственница флуктуаций, но дальняя: это макроскопическое, отнюдь не виртуальное явление, и всякий раз несёт с собой вполне ощутимый материальный эффект. Думаю, убеждать кого-либо в этом мне нет необходимости. Впрочем, разве возникновение массы не ощутимый материальный эффект? А реализуется он благодаря виртуальным квантовым процессам. Да и наша макроскопическая молния не могла бы родиться без этих процессов.





Но в абсолютном большинстве случаев в хаотичности флуктуаций мы видим целесообразность и упорядоченность. Бесконечная энергия вакуума используется строго в ограниченном объёме. Я что-то не слышал, чтобы кто-то стал жертвой не в меру распоясавшейся квантовомеханической флуктуации, а ведь энергии там могут возникать действительно бесконечные! Но эта энергия используется на созидание: весь видимый мир питается энергией флуктуаций. Каков механизм этого созидания? Как, в какой форме установлены законы, согласно которым ежедневно, ежечасно, ежесекундно строится этот мир? Как выстраивается эта Вселенная, рожденная из ничего?

Откуда плюсик знает, что ему надо переслать виртуальный (подчеркиваю, виртуальный, так как если разбираться до конца, то все частицы — переносчики взаимодействий виртуальны, но как в случае с глюонным облаком, иногда могут и материализоваться) фотон минусику, чтобы к нему притянуться? Или наоборот, такой же фотон другому плюсику, чтобы от того оттолкнуться? А глюоны с кварками? Откуда им известно, как и какое количество вакуумной энергии использовать, чтобы породить в одном случае протон, в другом — нейтрон? Как и зачем возникают поля? Откуда появляются их свойства? Зачем вакуумному полю с нулевой энергией возмущаться и порождать какие-то там сгустки энергии, если, как мы уже с вами говорили, всякая система стремится к своему самому низкому энергетическому уровню? Кто придумал, что разные поля и частицы должны взаимодействовать между собой?

И при этом всегда и везде будет соблюдаться закон сохранения энергии. А вы, уважаемые читатели, знаете, что такое энергия и откуда она берется? И почему существует универсальный закон её сохранения? А вот великие умы, крупнейшие физики-теоретики, вам на этот вопрос не ответят. Нет, конечно, приведут определение (а их множество, у каждого — своё), напишут десятки, а может быть, сотни формул, включающих символ энергии. И всё объяснение сведётся примерно к следующему: энергия — это нечто, с помощью чего можно совершить работу и что сохраняется. А вот что это по существу? Нет, никто не ответит. Не верите? Вот слова одного из величайших физиков XX века Ричарда Фейнмана, по лекциям которого уже много десятилетий обучались и обучаются студенты-физики по всему миру:

«Существует факт, или, если угодно, закон, управляющий всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлеченно. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним[выделено – Д.О.]. (Фейнмановские лекции по физике. Том I).



Ричард Фейнман (1918 – 1988), выдающийся американский физик, лауреат Нобелевской премии, создатель учебника «Фейнмановские лекции по физике», который до сих пор считается одним из лучших учебников по общей физике

Драматизм нашего (общечеловеческого) непонимания фундаментальных явлений собственного мира, где мы живём, лишь обострится, если мы с вами вспомним, что сохранятся-то это нечто (энергия) сохраняется, но в конечном итоге сумма этого сохранения завершится всё равно нулём именно потому, что суммарная энергия Вселенной, как мы говорили раньше, равна нулю. Так какую же работу энергия совершает, «какие трюки выкидывает»? Получается,  работу нулевую и «трюки» нулевые.

Вот уж, действительно, пустые хлопоты: Сизифов труд какой-то. Но какой ювелирный!

И вряд ли мы сможем даже попытаться разобраться в том, что же всё это означает, если не познакомимся хотя бы в общих чертах с таким понятием, как информация. Чему я и надеюсь посвятить следующую статью. опубликовано 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

   

Источник: www.cablook.com/universe/h-tsveta-aromaty-vashego-mikromira/

Исследователи доказали одну из самых странных особенностей квантовой физики

Поделиться



Теоретическая квантовая физика имеет странную фундаментальную особенность: на квантовом уровне атомы не будут двигаться, пока вы их измеряете. Звучит нелепо, но исследователи из Корнельского университета только что доказали, что это правда.

Команда обратила внимание, что атомы в чрезвычайно холодном облаке газа рубидия не двигаются всё то время, пока находятся под наблюдением. Чем чаще исследователи использовали лазер для измерения поведения, тем меньше наблюдали движения. Им приходилось или уменьшать мощность лазера или выключать его совсем, чтобы атомы начинали свободно передвигаться.





Это открытие может иметь большие последствия для квантовых вычислений. Например, это показывает, что квантовая криптография должна работать — злоумышленник просто не сможет шпионить на ваших коммуникационных сетях, поскольку само по себе наблюдение данных должно будет их уничтожить.

А на вершине всего этого способность останавливать движение на атомном уровне по желанию, что может привести к созданию квантовых сенсоров и переключателей настолько чутких, что они будут реагировать в тот самый момент, как только атомы начнут замедляться.

Конечно, мы ещё далеко от того, чтобы воочию увидеть квантовый компьютер, но, по крайней мере, теперь стало ясно, что концепт, стоящий за квантовыми вычислениями, имеет смысл.опубликовано 

  P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

 

Источник: gearmix.ru/archives/23434

Кот Шредингера в голове: почему наш мозг похож на квантовое поле

Поделиться



Одна из самых амбициозных задач современной науки — создать компьютерную модель человеческого мозга. Для того, чтобы попытаться точно воспроизвести работу нейронов, требуется целая система параллельно работающих машин. Но, что, если аналогия с компьютером не слишком точна, и процесс мышления лучше описывать в терминах квантовой физики? Американский писатель Дафна Мюллер предлагает подумать об этом в статье на портале Big Think.

Иррациональная организация человеческой психики — давний бич психологии. Когда кто-нибудь спрашивает, как дела, мы отвечаем либо «нормально», либо «хорошо». Но если дальше идет вопрос об определенном событии — «Как сегодня прошла твоя встреча с начальником?» — наши ответы гораздо более разнообразны, это может быть и «ужасно», и «восхитительно».





Не успев сказать и две фразы, мы сами себе противоречим: дела идут «нормально», но встречу с начальником мы считаем полным провалом. Как, в таком случае, все может быть нормально? На каждое эмоциональное проявление и каждое решение, которые мы принимаем, влияет сложное сочетание наших предубеждений, опыта, знаний и контекста. Это происходит и на сознательном, и на бессознательном уровне. Предугадывать человеческое поведение невероятно сложно, и теория вероятности в этом не лучший помощник.

Введение в квантовую теорию сознания: команда исследователей установила, что наши решения и убеждения часто не вписываются ни в какую логику на макро-уровне, тогда как на «квантовом» уровне поведение человека можно предсказать удивительно точно. В квантовой физике факт наблюдения за частицей влияет на ее состояние — так и в психологии «эффект наблюдателя» влияет на наше отношение к той или иной идее.

Мозг «играет в кости» с нашими «неопределенными» идеями, ощущениями и склонностями, чтобы сформировать несколько противоречащих друг другу мыслей, суждений или точек зрения

Вернемся к нашему примеру: если собеседник спрашивает: «Хорошо ли все прошло», мы начинаем искать в недавних событиях положительные моменты. Но если вопрос звучит как «Ты волновался перед встречей?», мы сразу вспоминаем, как тряслись коленки и дрожал голос во время выступления перед коллегами. Другая концепция, которую исследователи мозга заимствовали из квантовой физики — невозможность одновременно держать в голове противоречащие друг другу идеи. Другими словами, процесс принятия решений и формирования мнения напоминает эксперимент с котом Шредингера.

Квантовая теория познания повлияла на понимание механизмов работы мозга в психологии и нейроисследованиях: теперь считается, что мозг больше похож не на компьютер, а на отдельную вселенную со своим оригинальным устройством. Впрочем, идея о парадоксальной природе человеческого мышления и существования нашего вида в целом не нова — она развивается уже несколько веков. Изучая иррациональные механизмы нашего мышления, исследователи часто обращаются к противоречивым утверждениям, на которых строятся все мировые религии. Например, одной из основ буддизма является принцип «Спокойствие находится внутри вас. Не ищите его во внешнем мире». В христианстве одним из главных столпов веры является парадоксальная природа Христа — он одновременно является Сыном Божьим и человеком из плоти и крови. Мысль о том, что вне наших привычных представлений окружающая реальность начинает распадаться на части, столетиями разрабатывалась в религиозных текстах. В то же время, только через противоречия мы можем узнать что-то новое о мире и о самих себе.

В Ветхом Завете есть эпизод, где Иов взывает к Богу, спрашивая, почему на его долю выпало так много страданий. Господь отвечает Иову загадочным вопросом: «Где был ты, когда Я полагал основания земли?» (книга Иова, 38:4). Эта реплика кажется совершенно бессмысленной — зачем Бог спрашивает у человека, своего детища, где тот был, когда Бог создавал мир? Но в этой фразе не больше парадоксального, чем в знаменитой критике «принципа неопределенности» Гейзенберга, выраженной в фразе Эйнштейна «Бог не играет в кости». Стивен Хокинг возражает Эйнштейну, заявляя, что «даже Бог подчиняется принципу неопределенности», так как если бы все итоги его творения были предопределены, Бог не был бы Богом. По мнению Хокинга, Господь — «заядлый игрок в кости», и именно это качество определяет возможность его существования.

Согласно квантовой теории мышления, мозг «играет в кости» с нашими «неопределенными» идеями, ощущениями и склонностями, чтобы сформировать несколько противоречащих друг другу мыслей, суждений или точек зрения. Затем он синтезирует эти идеи в относительно однородные, «определенные» представления о реальности. Наблюдение за мышлением на квантовом уровне ведет к его трансформации, а это, в свою очередь, меняет окружающую реальность, определяющую наше сознание. опубликовано 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

 

Источник: theoryandpractice.ru

Почему есть нечто, а не ничто?

Поделиться



Некоторые физики считают, что могут объяснить, как сформировалась наша Вселенная. Если они окажутся правы, то наш космос мог возникнуть из ничего. 

Люди ведут споры о том, почему существует Вселенная, уже тысячи лет. Практически в каждой античной культуре люди придумывали собственную теорию сотворения мира – большинство из них включало в себя божественный замысел – и философы написали многие тома об этом. А вот наука может рассказать о сотворении Вселенной не так уж и много. 

Однако в последнее время часть физиков и космологов начала вести дискуссию по этому поводу. Они отмечают, что сейчас мы неплохо знаем историю Вселенной и законы физики, которые объясняют, как она устроена. Ученые считают, что эта информация позволит нам понять и то, как и почему существует космос. 
По их мнению, Вселенная, начиная от Большого Взрыва и заканчивая нашим многозвездным космосом, который существует на сегодняшний день, возникла из ничего. Это должно было случиться, говорят ученые, потому что «ничто» на самом деле внутренне нестабильно. 

Эта идея может показаться странной или просто-напросто сказочной. Но физики утверждают, что она берет начало из двух самых мощных и успешных теорий: квантовой физики и общей теории относительности. 

Итак, как же всё могло возникнуть из ничего? 





Частицы из пустого пространства

Для начала нам стоит обратиться к области квантовой физики. Это область физики, которая изучает очень маленькие частицы: атомы и даже ещё более мелкие объекты. Квантовая физика – чрезвычайно успешная теория, и она стала фундаментом для появления большинства современных электронных гаджетов. 

Квантовая физика рассказывает нам о том, что пустого пространства вообще не существует. Даже самый идеальный вакуум заполнен колышущимся облаком частиц и античастиц, которые появляются из ничего и затем превращаются в ничто. Эти так называемые «виртуальные частицы» существуют в течение недолгого времени и поэтому мы не можем их увидеть. Однако мы знаем, что они есть из-за тех эффектов, которые вызывают. 





К пространству и времени из отсутствия пространства и времени

Давайте теперь перенесём наш взгляд от мельчайших объектов – таких, как атомы, – к очень крупным штукам – таким, как галактики. Наша лучшая теория, объясняющая такие большие вещи, – это общая теория относительности, главное достижение Альберта Эйнштейна. Эта теория объясняет, как взаимосвязаны между собой пространство, время и гравитация. 

Общая теория относительности сильно отличается от квантовой физики, и до настоящего момента никто не смог сложить их в единый пазл. Однако некоторым теоретикам удалось, используя аккуратно выбранное сходство, приблизить эти две теории друг к другу в конкретных задачах. Например, этот подход был использован Стивеном Хокингом в Кембриджском университете, когда он описывал чёрные дыры. 

Физики обнаружили, что когда квантовая теория применяется к пространству в маленьких масштабах, пространство становится нестабильным. Пространство и время вместо того, чтобы оставаться гладкими и непрерывными, начинают бурлить и пениться, принимая форму лопающихся пузырей. 

Другими словами, маленькие пузырьки времени и пространства могут формироваться спонтанным образом. «В квантовом мире время и пространство являются неустойчивыми, — говорит астрофизик Лоуренс Максвелл Краусс из Университета штата Аризона. – Таким образом, вы можете формировать виртуальное пространство-время так же, как вы формируете виртуальные частицы». 

Более того, если эти пузыри могут возникнуть, вы можете быть уверены, что они возникнут. «В квантовой физике, если что-то не запрещено, это обязательно случится с определенной долей вероятности», — считает Александр Виленкин из университета Тафтса в штате Массачусетс. 





Вселенная из пузыря

Итак, не только частицы и античастицы могут возникать из ничего и превращаться в ничто: пузыри пространства-времени могут проделывать то же самое. Однако существует большая пропасть между бесконечно малым пространственно-временным пузырём и огромнейшей Вселенной, состоящей из более чем 100 млрд галактик. Действительно, почему бы только что появившемуся пузырю не исчезнуть в мгновение ока? 

И оказывается, есть способ как заставить пузырь выжить. Для этого нужен ещё один трюк, который называется космической инфляцией. 

Большинство современных физиков считают, что Вселенная началась с Большого Взрыва. Сначала вся материя и энергия в космосе были сжаты в невероятно маленькую точку, которая затем начала быстро расширяться. О том, что наша Вселенная расширяется, учёные узнали в XX веке. Они увидели, что все галактики разлетаются друг от друга, а значит, когда-то они располагались близко друг к другу. 

Согласно инфляционной модели Вселенной, сразу после Большого Взрыва Вселенная расширялась гораздо быстрее, чем в наши дни. Эта диковинная теория появилась в 1980-х гг., благодаря Алану Гуту из Массачусетского технологического института, и была доработана советским физиком Андреем Линде, который работает теперь в Стэнфордском университете. 

Идея инфляционной модели Вселенной заключается в том, что сразу после Большого Взрыва маленький пузырь пространства расширялся с колоссальной скоростью. За невероятно короткий срок он из точки, меньшей по размеру, чем ядро атома, достиг объема песчинки. Когда же в конце концов, расширение замедлилось, вызвавшая его сила трансформировалась в материю и энергию, которые заполняют сегодняшнюю Вселенную. 

Несмотря на свою кажущуюся странность, инфляционная модель Вселенной неплохо соответствует фактам. В частности, она объясняет, почему реликтовое излучение — космическое микроволновое фоновое излучение, сохранившееся со времен Большого Взрыва — равномерно распределено в небе. Если бы Вселенная расширялась не так быстро, тогда, скорее всего, излучение было бы распределно более хаотично, чем мы видим сегодня. 





Вселенная плоская, и почему этот факт важен

Инфляция также помогает космологам определить геометрию нашей Вселенной. Оказалось, что знание геометрии необходимо для понимания, как космос мог возникнуть из ничего. 

Общая теория относительности Альберта Эйнштейна говорит, что пространство-время, в котором мы живем, может принимать три различные формы. Оно может быть плоским, как поверхность стола. Оно может быть искривленным, как площадь сферы, и поэтому, если ты начал движение из определенной точки, то обязательно в нее вернешься. И наконец, оно может быть вывернуто наружу, как седло. Так в какой форме пространства-времени мы живем? 

Это можно объяснить следюущим образом. Возможно, вы помните из школьных уроков математики, что углы треугольника в сумме равны 180 градусам. Это верно только тогда, когда треугольник находится в плоском пространстве. Если вы нарисуете треугольник на поверхности воздушного шарика, сумма трех углов составит больше, чем 180 градусов. Если же вы нарисуете треугольник на поверхности, похожей на седло, сумма трех углов будет меньше, чем 180 градусов. 

Для того, чтобы понять, что наша Вселенная плоская, нам необходимо измерить углы гигантского треугольника. И это тот случай, когда в дело вступает инфляционная модель Вселенной. Она определяет средние размеры холодных и горячих пятен в космическом микроволновом фоне. Эти пятна были измерены в 2003 году, и именно их астрономы смогли использовать в качестве аналогов треугольника. Как результат, мы знаем, что самые крупные из доступных нашим наблюдаениям масштабов в нашей Вселенной – плоские. 





Таким образом, оказалось, что плоская Вселенная является необходимостью. Это так, потому что только плоская Вселенная могла образоваться из ничего. 

Все, что существует во Вселенной – начиная от звезд и галактик и заканчивая светом, который они вызывают, должно было из чего-то образоваться. Мы уже знаем, что частицы возникают на квантовом уровне, и поэтому мы могли бы ожидать, что во Вселенной есть кое-какая мелочёвка. Но для образования всех этих звёзд и планет требуется огромное количество энергии. 

Но откуда Вселенная взяла всю эту энергию? Звучит, конечно, странно, но энергии не обязательно было откуда-то браться. Дело в том, что каждый объект нашей Вселенной обладает гравитацией и притягивает к себе другие объекты. И это уравновешивает энергию, необходимую для создания первой материи. 

Это немного похоже на старые весы. Вы можете положить сколь угодно тяжёлый предмет на одну чашу весов, и весы будут в равновесии, если на другом конце находится объект такой же массы. В случае со Вселенной, на одном конце располагается материя, а «уравновешивает» её гравитация. 

Физики подсчитали, что в плоской Вселенной энергия материи точно равна энергии гравитации, которую эта материя создаёт. Но это работает только в отношении плоской Вселенной. Если бы Вселенная была искривленной, баланса бы не было. 





Вселенная или мультивселенная?

Теперь, «приготовление» Вселенной выглядит довольно простым делом. Квантовая физика говорит нам, что «ничто» является неустойчивым, и поэтому переход от «ничего» к «чему-то» должен быть практически неизбежным. Далее, благодаря инфляции из маленького пространственно-временного пузырька может образоваться массивная, плотная Вселенная. Как написал Краусс, «Законы физики, как мы понимаем их сегодня, допускают, что наша Вселенная образовалась из ничего – не было ни времени, ни пространства, ни частиц, ничего, о чем бы мы знали». 

Но почему тогда Вселенная образовалась только один раз? Если один пузырь раздулся до размеров нашей Вселенной, почему этого не могут сделать другие пузыри? 
Линде предлагает простой, но психоделичный ответ. Он считает, что Вселенные возникали и возникают непрерывно, и этот процесс будет продолжаться вечно. 
Когда инфляция Вселенной заканчивается, считает Линде, её все равно продолжает окружать пространство, в котором существует инфляция. Она вызывает возникновение еще большего количества Вселенных, и вокруг них образуется еще больше пространства, в котором происходит инфляция. Однажды инфляция началась, и она будет продолжаться бесконечно. Линде назвал это вечной инфляцией. Наша Вселенная может быть всего лишь песчинкой на бесконечном песчаном пляже. 

Другие вселенные могут сильно отличаться от нашей. У соседней вселенной может быть пять пространственных измерений, в то время как у нашей их всего три – длина, ширина и высота. Сила гравитации в ней может быть в 10 раз сильнее или в 1000 раз слабее. Или гравитации может и не быть вовсе. Материя может состоять из совершенно других частиц. 

Таким образом, может существовать не укладывающееся в нашем сознании разнообразие Вселенных. Линде считает, что вечная инфляция это не просто «абсолютно бесплатный обед», но это и единственный обед, на котором доступны все возможные блюда.опубликовано  

Автор: Robert Adler 

Перевод: Екатерина Шутова

 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

Источник: vk.com/fizika_nevozmojnogo?w=page-35207911_50082670