Квантовая телепортация

Поделиться



Четыре способа преодолеть вселенское ограничение скорости

Поделиться







Когда Альберт Эйнштейн впервые установил, что свет движется с одинаковой скоростью по нашей Вселенной, он, по сути, установил ограничение скорости на 299 792 458 метров в секунду. Но это не конец. На самом деле это только начало. До Эйнштейна масса — атомы, из которых вы, я и все вокруг состоим — и энергия рассматривались как отдельные величины. Но в 1905 году Эйнштейн навсегда изменил способ физического восприятия Вселенной.

Специальная теория относительности связала массу и энергию вместе в простом, но фундаментальном уравнении E=mc^2. Это маленькое уравнение означает, что никакая масса не может двигаться так же быстро, как свет, или быстрее.

Человечество ближе всего подходило к пределу скорости света в мощных ускорителях частиц вроде Большого адронного коллайдера и Тэватрона. Эти колоссальные машины ускоряют субатомные частицы до 99,99% скорости света, но, как объясняет нобелевский лауреат по физике Дэвид Гросс, эти частицы никогда не достигают космического предела скорости.

Для этого понадобится бесконечное количество энергии, а масса объекта станет бесконечной, что невозможно. (Частицы света фотоны могут двигаться со скоростью света, потому что массы не имеют).

После Эйнштейна физики обнаружили, что некоторые величины могут достигать сверхлюминальных (или сверхсветовых) скоростей и по-прежнему соблюдать космические правила, установленные специальной теорией относительности. Хотя это не опровергает теорию Эйнштейна, оно дает нам представление о своеобразном поведении света и квантовом пространстве.

Световой эквивалент звукового удара

Когда объекты движутся быстрее скорости звука, они создают звуковой удар. Таким образом, в теории, если что-то движется быстрее скорости света, оно должно производить нечто вроде «светового удара».

По факту этот световой удар происходит ежедневно и по всему миру — его можно даже увидеть глазами. Он называется излучением Черенкова (эффектом Черенкова — Вавилова) и выглядит как голубоватое свечение внутри ядерных реакторов (на снимке ниже — Продвинутого испытательного реактора).





Излучение Черенкова названо в честь советского ученого Павла Алексеевича Черенкова, который впервые измерил его в 1934 году и был удостоен Нобелевской премии по физике в 1958 году за свое открытие.

Излучение Черенкова светится, потому что ядро реактора погружено в воду с целью охлаждения. В воде свет движется медленнее, его скорость составляет 75% скорости света в вакууме космоса, но электроны, которые рождаются в процессе реакции внутри ядра, движутся в воде быстрее света.

Частицы вроде этих электронов, которые превосходят в скорости свет в воде или какой-либо другой среде вроде стекла, создают ударную волну, подобную ударной волне от звукового удара.

Когда ракета, например, проходит через воздух, она генерирует волны давления перед собой, которые толкают воздух со скоростью звука, и чем ближе ракета к звуковому барьеру, тем меньше времени остается у волн, чтобы уйти с пути объекта. Достигнув скорости звука, ракета смалывает волны в кучу, создавая ударный фронт, который приводит к мощному звуковому удару.

Аналогичным образом, когда электроны движутся сквозь воду со скоростью, превышающую скорость света в воде, они порождают ударную волну света, которая иногда светится синим цветом, но может светиться и в ультрафиолете.

Хотя эти частицы движутся быстрее света в воде, на деле же они не нарушают космического ограничения скорости в 300 000 км/с.

Когда правила не учитываются





Не стоит забывать, что специальная теория относительности Эйнштейна утверждает, что ничто с массой не может двигаться быстрее скорости света; и, насколько физики могут утверждать, вселенная соблюдает это правило. Но как быть с тем, что без массы?

Фотоны по своей природе не могут превзойти скорость света, но частицы света — не единственные безмассовые вещи во вселенной. Пустое пространство не содержит материальную субстанцию, а значит не имеет массы по определению.

«Поскольку ничто не может быть более пустым, чем вакуум, он может расширяться быстрее скорости света, поскольку ни один материальный объект не нарушает световой барьер, — считает астрофизик-теоретик Мичио Каку. — Таким образом, пустое пространство, безусловно, может двигаться быстрее света».

Физики считают, что так и произошло сразу после Большого Взрыва в эпоху инфляции, которую впервые предположили физики Алан Гут и Андрей Линде в 1980-х годах. В течение триллионной триллионной доли секунды Вселенная умножалась на два в размерах и в результате расширилась экспоненциально очень быстро, значительно превысив скорость света.

Квантовая запутанность срезает углы

Квантовая запутанность кажется сложной и пугающей, но в самом простом смысле запутанность — это просто способ взаимодействия субатомных частиц. И что самое интересное в этом явлении, так это то, что процесс этой связи может происходить быстрее света.

«Если два электрона свести достаточно близко, они начнут вибрировать в унисон, в соответствии с квантовой теорией. Потом, если разделить эти электроны сотнями или даже тысячами световых лет, они все равно будут поддерживать связь друг с другом. Если покачнуть один электрон, другой моментально почувствует эту вибрацию, быстрее скорости света. Эйнштейн думал, что это явление должно опровергнуть квантовую теорию, потому что ничто не может двигаться быстрее света».

Но в 1935 году Эйнштейн, Борис Подольский и Натан Розен попытались опровергнуть квантовую теорию в ходе мысленного эксперимента, который Эйнштейн назвал «жутким действием на расстоянии».

По иронии судьбы, их работа легла в основу так называемого парадокса ЭПР (Эйнштейна — Подольского — Розена), который описывает эту мгновенную связь в процессе квантовой запутанности. Это, в свою очередь, может лечь (и постепенно ложится) в основу многих передовых технологий, таких как квантовая криптография.

Мечты о кротовых норах





Поскольку ничто с массой не может двигаться быстрее света, вы можете распрощаться с межзвездными путешествиями — во всяком случае в классическом смысле, с ракетами и обычными полетами.

Хотя Эйнштейн и похоронил наши мечты о глубоком космосе со своей специальной теорией относительности, он дал нам новую надежду на межзвездные путешествия со своей общей теорией относительности в 1916 году.

В то время как специальная теория относительности «женит» массу и энергию, общая теория относительно смыкает вместе пространство и время.

«Единственный возможный способ преодолеть световой барьер может быть скрыт в общей теории относительности и искривлении пространства времени, — считает Каку. — Это искривление мы называем «червоточиной», и она теоретически может позволить нам преодолевать огромные расстояния мгновенно, буквально пронзая насквозь ткань пространства-времени».

В 1988 году физик-теоретик Кип Торн — научный консультант и продюсер фильма «Интерстеллар» — использовал уравнения общей относительности Эйнштейна, чтобы предсказать возможное существование червоточин, которые открыли бы нам дорогу в космос. Но в его случае этим кротовым норам необходима была странная экзотическая материя, которая поддерживала бы их в открытом состоянии.

«Удивительный на сегодня факт: это экзотическое вещество может существовать, благодаря странностям законов квантовой механики», — пишет Торн в своей книге «Наука «Интерстеллара».

И это экзотическое вещество может быть когда-нибудь создано в лабораториях на Земле, хотя и в небольших количествах. Когда Торн предложил свою теорию стабильных червоточин в 1988 году, он призвал сообщество физиков помочь ему определить, может ли во вселенной существовать достаточно экзотического вещества, чтобы сделать существование червоточин возможным.

«Это породило много исследований в сфере физике; но сегодня, спустя тридцать лет, ответ до сих пор неясен, — пишет Торн. Пока все идет к тому, что ответ «нет», но, — Мы пока далеко от окончательного ответа». опубликовано 

Источник: hi-news.ru

Квантовой запутанности отвели большую роль в образовании пространства-времени

Поделиться







Группа физиков и математик сделали значительный шаг в сторону объединения общей теории относительности и квантовой механики, объясняя, как пространство-время вытекает из квантовой запутанности в более фундаментальную теорию. Работа Хироси Оогури из Токийского университета Кавли, математика Матильды Марколли и аспирантов Дженнифер Лин и Богдана Стойка была опубликована в Physical Review Letters.

Физики и математики давно ищут «теорию всего», которая должна объединить общую теорию относительности и квантовую механику. Общая теория относительности объясняет гравитацию и крупномасштабные явления вроде динамики звезд и галактик во Вселенной, а квантовая механика объясняет микроскопические явления, происходящие на субатомных и молекулярных масштабах.

Голографический принцип широко рассматривается в качестве важнейшего признака успешной «теории всего». Согласно этому принципу, гравитация в трехмерном объеме может быть описана квантовой механикой на двумерной поверхности, окружающей этот объем. В частности, три измерения этого объема должны вытекать из двумерных измерений поверхности. Тем не менее понимание точной механики появления объема из поверхности оставалось неуловимым.

Оогури и его коллеги обнаружили, что квантовая запутанность является ключом к решению этого вопроса. Используя квантовую теорию (которая не включает гравитацию), они показали, как вычислить плотность энергии, которая является источником гравитационных взаимодействий в трех измерениях, используя данные о квантовой запутанности на поверхности. Это аналогично диагностике условий внутри вашего тела по рентгеновским двумерным снимкам. Такой подход позволил ученым интерпретировать универсальные свойства квантовой запутанности как условия плотности энергии, которые должны удовлетворить любой последовательной квантовой теории гравитации, не включая собственно гравитацию в теорию. Важность квантовой запутанности в этом вопросе уже неоднократно подчеркивалась раньше, но ее точная роль в образовании пространства-времени не была ясна до публикации работы Оогури и его коллег.





Гравитация в нашем трехмерном мире и проекция данных на двумерной поверхности

 

Квантовая запутанность — это явление, когда квантовые состояния, вроде спина или поляризации частиц, частиц в разных местах не могут быть описаны независимо. Измерение (а значит, и воздействие) одной частицы также должно влиять на другую, и это явление сам Эйнштейн называл «жутким действием на расстоянии». Работа Оогури и его коллег показывает, что квантовая запутанность создает дополнительные измерения гравитационной теории.

«Было известно, что квантовая запутанность глубоко связана с вопросами объединения ОТО и квантовой механики, вроде парадокса информации черной дыры и парадокса файрвола, — говорит Хироси. — Наша работа проливает новый свет на отношения квантовой запутанности с микроскопической структурой пространства-времени путем точных расчетов. Связь между квантовой гравитацией и информационной наукой становится невероятно важной для обеих сфер. Надеюсь, дальнейшие исследования будут весьма плодотворными». опубликовано 

P.S. И помните, всего лишь изменяя свое сознание — мы вместе изменяем мир! ©

Источник: hi-news.ru

Квантовая запутанность и червоточины могут быть тесно связаны

Поделиться



Когда Альберт Эйнштейн поражался «жуткой» дальнодействующей связи между частицами, он не думал о своей общей теории относительности. Вековая теория Эйнштейна описывает, как возникает гравитация, когда массивные объекты деформируют ткань пространства и времени. Квантовая запутанность, тот жуткий источник эйнштейновского испуга, как правило, затрагивает крошечные частицы, которые незначительно действуют на гравитацию. Пылинка деформирует матрас ровно так же, как субатомная частица искривляет пространство.

Тем не менее физик-теоретик Марк Ван Раамсдонк подозревает, что запутанность и пространство-время на самом деле связаны между собой. В 2009 году он рассчитал, что пространство без запутанности не смогло бы удержать себя. Он написал работу, из которой вытекало, что квантовая запутанность является иглой, которая сшивает воедино гобелен космического пространства-времени.





Многие журналы отказались публиковать его работу. Но спустя годы изначального скептицизма изучение идеи того, что запутанность формирует пространство-время, стало одной из самых горячих тенденций в области физики.

«Выходя из глубоких основ физики, все указывает на то, что пространство должно быть связано с запутанностью», — говорит Джон Прескилл, физик-теоретик из Калтеха.
В 2012 году появилась еще одна провокационная работа, представляющая парадокс запутанных частиц внутри и снаружи черной дыры. Менее чем через год два эксперта в этой области предложили радикальное решение: запутанные частицы соединяются червоточинами — туннелями пространства-времени, представленными еще Эйнштейном, которые в настоящее время одинаково часто появляются на страницах журналов по физике и в научной фантастике. Если это допущение верно, запутанность не является жутким дальнодействующим соединением, о котором думал Эйнштейн — а вполне реальным мостом, связывающим удаленные точки в пространстве.





Многие ученые находят эти идеи достойными внимания. В последние годы физики, казалось бы, несвязанных специальностей сошлись на этом поле запутанности, пространства и червоточин. Ученые, которые когда-то были сосредоточены на создании безошибочных квантовых компьютеров, сегодня размышляют, не является ли сама Вселенная квантовым компьютером, который тихо программирует пространство-время в сложной сети запутанностей. «Все прогрессирует невероятным образом», — говорит Ван Раамсдонк из Университета Британской Колумбии в Ванкувере.

Физики возлагают большие надежды на то, куда их заведет это соединение пространства-времени с запутанностью. ОТО блестяще описывает, как работает пространство-время; новые исследования могут приоткрыть завесу над тем, откуда берется пространство-время и на что оно похоже на мельчайших масштабах, лежащих во власти квантовой механики. Запутанность может быть секретным ингредиентом, который объединит эти пока что несовместимые области в теорию квантовой гравитации, позволив ученым понять условия внутри черной дыры и состояние Вселенной в первые моменты после Большого Взрыва.

Голограммы и банки с супом

Прозрение Ван Раамсдонка в 2009 году не материализовалось из воздуха. Оно уходит корнями в голографический принцип, идею того, что граница, ограничивающая объем пространства, может содержать всю информацию, в нем заключенную. Если применить голографический принцип к повседневной жизни, то любопытный сотрудник может идеально реконструировать все, что находится в офисе, — кипы бумаг, семейные фотографии, игрушки в углу и даже файлы на жестком диске компьютера — просто глядя на внешние стены квадратного офиса.

Эта идея противоречива, учитывая то, что стены имеют два измерения, а интерьер офиса три. Но в 1997 году Хуан Малдасена, струнный теоретик тогда из Гарварда, привел интригующий пример того, что голографический принцип мог бы раскрыть о Вселенной.

Он начал с анти-де-ситтеровского пространства, которое напоминает пространство-время, в котором преобладает гравитации, но обладает рядом странных атрибутов. Оно изогнуто таким образом, что вспышка света, излученного в определенном месте, в конечном счете вернется оттуда, где появилась. И хотя Вселенная расширяется, анти-де-ситтеровское пространство не растягивается и не сжимается. Из-за таких особенностей кусок анти-де-ситтеровского пространства с четырьмя измерениями (тремя пространственными и одним временным) может быть окружен трехмерной границей.

Малдасена обращался к цилиндру анти-де-ситтеровского пространства-времени. Каждый горизонтальный срез цилиндра представляет состояние его пространства в данный момент, тогда как вертикальное измерение цилиндра представляет время. Малдасена окружил свой цилиндр границей для голограммы; если бы анти-де-ситтеровское пространство было банкой супа, то граница была бы этикеткой.

На первый взгляд кажется, что эта граница (этикетка) не имеет ничего общего с наполнением цилиндра. Пограничная «этикетка», к примеру, соблюдает правила квантовой механики, а не гравитации. И все же гравитация описывает пространство внутри содержимого «супа». Малдасена показал, что этикетка и суп были одним и тем же; квантовые взаимодействия на границе отлично описывают  анти-де-ситтеровское пространство, которое закрывает эта граница.

«Две этих теории кажутся совершенно разными, но точно описывают одно и то же», — говорит Прескилл.




Малдасена добавил запутанность в голографическое уравнение в 2001 году. Он представил пространство в двух банках с супом, каждая из которых содержит черную дыру. Затем создал эквивалент самодельного телефона из стаканчиков, соединяющего черные дыры с помощью червоточины — туннеля через пространство-время, впервые предложенного Эйнштейном и Натаном Розеном в 1935 году. Малдасена искал способ создать эквивалент такой связи пространства-времени на этикетках банок. Хитрость, как он понял, была в запутанности.

Как и червоточина, квантовая запутанность связывает объекты, которые не имеют очевидных отношений. Квантовый мир — расплывчатое место: электрон может вращаться в обе стороны одновременно, будучи в состоянии суперпозиции, пока измерения не предоставят точный ответ. Но если два электрона запутаны, измерение спина одного позволяет экспериментатору узнать спин другого электрона — даже если партнерский электрон находится в состоянии суперпозиции. Эта квантовая связь остается даже если электроны будут разделять метры, километры или световые годы.

Малдасена показал, что с помощью запутывания частиц на одной этикетке с частицами на другой можно идеально квантово-механически описать соединение червоточиной банок. В контексте голографического принципа, запутанность эквивалентна физическому связыванию кусков пространства-времени вместе.

Вдохновленный этой связью запутанности с пространством-временем, Ван Раамсдонк задался вопросом, насколько большую роль запутанность может играть в формировании пространства-времени. Он представил самую чистую этикетку на банке с квантовым супом: белую, соответствующую пустому диску анти-де-ситтеровского пространства. Но он знал, что, согласно основам квантовой механики, пустое пространство никогда не будет полностью пустым. Оно заполнено парами частиц, которые всплывают и исчезают. И этим мимолетные частицы запутаны.

Поэтому Ван Раамсдонк нарисовал воображаемую биссектрису на голографической этикетке и затем математически разорвал квантовую запутанность между частицами на одной половине этикетке и частицами на другой. Он обнаружил, что соответствующий диск анти-де-ситтеровского пространства начал делиться пополам. Будто бы запутанные частицы были крючками, которые удерживают полотно пространства и времени на месте; без них пространство-времени разлетается на части. По мере того, как Ван Раамсдонк понижал степень запутанности, часть подключенного к разделенным регионам пространства становилась тоньше, подобно резиновой нити, тянущейся от жвачки.

«Это навело меня на мысль, что присутствие пространства начинается с присутствия запутанности».
Это было смелое заявление, и потребовалось время, чтобы работа Ван Раамсдонка, опубликованная в General Relativity and Gravitation в 2010 году, привлекла серьезное внимание. Огонь интереса всполыхнул уже в 2012 году, когда четверо физиков из Калифорнийского университета в Санта-Барбаре написали работу, бросающую вызов общепринятым убеждениям о горизонте событий, точки невозврата черной дыры.

Истина, скрытая файрволом





В 1970-х годах физик-теоретик Стивен Хокинг показал, что пары запутанных частиц — тех же видов, которые Ван Раамсдонк позже анализировал в своей квантовой границе — могут распадаться на горизонте событий. Одна падает в черную дыру, а другая убегает вместе с так называемым излучением Хокинга. Этот процесс постепенно подтачивает массу черной дыры, в конечном итоге приводя к ее гибели. Но если черные дыры исчезают, вместе с ней должна исчезать и запись всего, что падало внутрь. Квантовая теория же утверждает, что информация не может быть уничтожена.

К 90-м годам несколько физиков-теоретиков, включая Леонарда Сасскинда из Стэнфорда, предложили решение этой проблемы. Да, сказали они, материя и энергия падает в черную дыру. Но с точки зрения внешнего наблюдателя, этот материал никогда не преодолевает горизонт событий; он словно балансирует на его грани. В результате горизонт событий становится голографической границей, содержащей всю информацию о пространстве внутри черной дыры. В конце концов, когда черная дыра испаряется, эта информация утекает в виде излучения Хокинга. В принципе, наблюдатель может собрать это излучение и восстановить всю информацию о недрах черной дыры.

В своей работе 2012 года физики Ахмед Альмхейри, Дональд Марольф, Джеймс Салли и Джозеф Полчинский заявили, что в этой картине что-то не так. Для наблюдателя, пытающегося собрать головоломку того, что находится внутри черной дыры, отметили одни, все отдельные части головоломки — частицы излучения Хокинга — должны быть запутаны между собой. Также каждая хокингова частица должна быть запутана со своим оригинальным партнером, который упал в черную дыру.

К сожалению, одной запутанности недостаточно. Квантовая теория утверждает, что для того, чтобы запутанность присутствовала между всеми частицами снаружи черной дыры, должна быть исключена запутанность этих частиц с частицами внутри черной дыры. Кроме того, физики обнаружили, что разрыв одной из запутанностей породил бы непроницаемую энергетическую стену, так называемый файрвол, на горизонте событий.

Многие физики усомнились в том, что черные дыры на самом деле испаряют все, что пытается проникнуть внутрь. Но сама возможность существования файрвола наводит на тревожные мысли. Ранее физики уже задумывались о том, как выглядит пространство внутри черной дыры. Теперь они не уверены в том, есть ли у черных дыр это «внутри» вообще. Все будто смирились, отмечает Прескилл.

Но Сасскинд не смирился. Он потратил годы, пытаясь доказать, что информация не исчезает внутри черной дыры; сегодня он так же убежден, что идея файрвола ошибочна, но доказать этого пока не смог. Однажды он получил загадочное письмо от Малдасены: «В нем было немного, — говорит Сасскинд. — Только ЭР = ЭПР». Малдасена, работающий сейчас в Институте продвинутых исследований в Принстоне, задумался о своей работе с банками супа 2001 года и заинтересовался, могут ли червоточины разрешить мешанину запутанности, порожденную проблемой файрвола. Сасскинд быстро подхватил эту идею.

В статье, опубликованной в немецком журнале Fortschritte der Physik в 2013 году, Малдасена и Сасскинд заявили, что червоточина — технически мост Эйнштейна-Розена, или ЭР — является пространственно-временным эквивалентом квантовой запутанности. (Под ЭПР понимают эксперимент Эйнштейна-Подольского-Розена, который должен был развеять мифологическую квантовую запутанность). Это означает, что каждая частица излучения Хокинга, независимо от того, как далеко она находится от начала, напрямую связана с недрами черной дыры посредством короткого пути через пространство-время.

«Если двигать через червоточину, далекие вещи оказываются не такими уж и далекими», — говорит Сасскинд.
Сасскинд и Малдасена предложили собрать все частицы Хокинга и столкнуть их вместе, пока они не коллапсируют в черную дыру. Эта черная дыра была бы запутана, а значит соединена червоточиной с оригинальной черной дырой. Этот трюк превратил запутанную мешанину хокинговых частиц — парадоксально запутанных с черной дырой и между собой — в две черные дыры, соединенные червоточиной. Перегрузка запутанности разрешилась, и проблема файрвола была исчерпана.

Не все ученые прыгнули на подножку трамвая ЭР = ЭПР. Сасскинд и Малдасена признают, что им предстоит проделать еще много работы, чтобы доказать эквивалентность червоточин и запутанности. Но после обдумывания последствий парадокса файрвола, многие физики соглашаются, что пространство-время внутри черной дыры обязано своим существованием запутанности с излучением снаружи. Это важное прозрение, отмечает Прескилл, поскольку оно также означает, что вся ткань пространства-времени Вселенной, включая тот клочок, который занимаем мы, является продуктом квантового жуткого действия.

Космический компьютер





Одно дело сказать, что вселенная конструирует пространство-время посредством запутанности; совсем другое — показать, как вселенная это делает. Этой сложной задачей занялись Прескилл и коллеги, которые решили рассмотреть космос как колоссальный квантовый компьютер. Почти двадцать лет ученые работали над строительством квантовых компьютеров, которые используют информацию, зашифрованную в запутанных элементах, вроде фотонов или крошечных микросхем, чтобы решать проблемы, с которыми традиционные компьютеры справиться не могут. Команда Прескилла использует знание, полученное в результате этих попыток, чтобы предсказать, как отдельные детали внутри банки с супом могли бы отразиться на заполненной запутанностью этикетке.

Квантовые компьютеры работают, эксплуатируя компоненты, которые находятся в суперпозиции состояний, как носители данных — они могут быть нулями и единицами одновременно. Но состояние суперпозиции очень хрупкое. Избыток тепла, например, может разрушить состояние и всю заключенную в нем квантовую информацию. Эти потери информации, которые Прескилл сравнивает с рваными страницами в книге, кажутся неизбежными.

Но физики ответили на это, создав протокол квантовой коррекции ошибок. Вместо того чтобы полагаться на одну частицу для хранения квантового бита, ученые разделяют данные между несколькими запутанными частицами. Книга, написанная на языке квантовой коррекции ошибок, будет полна бреда, говорит Прескилл, но все ее содержимое можно будет восстановить, даже если половина страниц пропадет без вести.

Квантовая коррекция ошибок привлекла много внимания в последние годы, но теперь Прескилл и его коллеги подозревают, что природа придумала эту систему уже давно. В июне, в журнале Journal of High Energy Physics, Прескилл и его команда показали, как запутывание множества частиц на голографической границе идеально описывает одну частицу, притягиваемую гравитацией внутри куска анти-де-ситтеровского пространства. Малдасена говорит, что эта находка может привести к лучшему пониманию того, как голограмма кодирует все детали пространства-времени, которое окружает.

Физики признают, что их размышления должны пройти долгий путь, чтобы соответствовать реальности. В то время как анти-де-ситтеровское пространство предлагает физикам преимущество работы с хорошо определенной границей, у Вселенной нет такой четкой этикетки на банке с супом. Ткань пространства-времени космоса расширяется с момента Большого Взрыва и продолжает делать это в нарастающем темпе. Если вы отправите луч света в космос, он не развернется и не вернется; он будет лететь. «Непонятно, как определить голографическую теорию нашей Вселенной, — писал Малдасена в 2005 году. — Просто нет удобного места для размещения голограммы».

Тем не менее, как бы странно ни звучали все эти голограммы, банки с супом и червоточины, они могут стать перспективными дорожками, которые приведут к слиянию квантовых жутких действий с геометрией пространства-времени. В своей работе над червоточинами Эйнштейн и Розен обсудили возможные квантовые последствия, но не провели соединения со своими ранними работами по запутанности. Сегодня эта связь может помочь объединить квантовую механику ОТО в теорию квантовой гравитации. Вооружившись такой теорией, физики могли бы разобрать загадки состояния юной Вселенной, когда материя и энергия умещались в бесконечно малой точке пространства. опубликовано 

  P.S. И помните, всего лишь изменяя свое сознание- мы вместе изменяем мир! ©

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

Источник: hi-news.ru

Из чего могло бы состоять пространство-время

Поделиться



Одним из самых странных аспектов квантовой механики является запутанность, поскольку две запутанных частицы влияют друг на друга через огромные дистанции, что, на первый взгляд, нарушает фундаментальный физический принцип локальности: то, что происходит в определенной точке пространства, может повлиять только на точки поблизости. Но что, если локальность — и само пространство — не так уж фундаментальны, в конце концов? Джордж Массер исследует возможные последствия этого в своей новой книге „Spooky Action At a Distance“. («Жутким действием на расстоянии» квантовую запутанность назвал Альберт Эйнштейн).

 

Когда философу Дженнан Исмаэль было десять лет, ее отец, уроженец Ирака, профессор Университета Калгари, купил большой деревянный шкаф на аукционе. Порывшись в нем, она наткнулась на старый калейдоскоп и была в восторге. Она экспериментировала с ним часами и выясняла, как он работает. «Я не говорила сестре, что нашла его, потому что боялась, что она заберет», — вспоминает она.

 





 

Когда вы заглядываете в калейдоскоп и поворачиваете трубу, разноцветные фигуры начинают расцветать, крутиться и объединяться, казалось бы, совершенно необъяснимым и непредсказуемым образом, как если бы оказывали друг на друга жуткое действие на расстоянии. Но чем больше вы ими восхищаетесь, тем больше вы подмечаете закономерностей в их движении. Формы на противоположных концах вашего поля зрения меняются в унисон, и эта симметрия позволяет вам понять, что происходит в действительности: эти формы не физические объекты, а изображения объектов — осколков стекла, который проворачиваются внутри зеркальной трубы.

«Там один кусочек стекла, который избыточно представляется в разных частях пространства, — говорит Исмаэль. — Если сосредоточить внимание на общем охватывающем пространстве, физическое описание трехмерного калейдоскопа будет довольно прямолинейной причинно-следственной историей. Есть кусочек стекла, он отражается в зеркалах, и так далее». Увиденный в реальности, калейдоскоп больше не является загадкой, хотя и по-прежнему удивляет.

Спустя несколько десятилетий, готовясь к речи о квантовой физике, Исмаэль вспомнила о калейдоскопе и купила новенький, блестящую медную трубу в бархатном чехле. Он стал, как ее осенило, метафорой нелокальности в физике. Возможно, частицы в экспериментах с запутанностью или галактиках в далеких галактических пределах ведут себя странно, поскольку являются проекциями — вторичными творениями, в некотором смысле — существующих в совершенно другой области объектов.

«В случае с калейдоскопом мы знаем, что должны делать: мы должны увидеть всю систему; мы должны увидеть, как создается образ пространства, — говорит Исмаэль. — Как построить аналог этого для квантовых эффектов? Для этого нужно увидеть космос, который мы знаем — повседневный космос, в котором мы проводим измерения событий, расположенных в разных частях космоса — как неразрывную структуру. Возможно, когда мы смотрим на две части, мы видим одно и то же событие. Мы взаимодействуем с одним и тем же элементом реальности на разных участках пространства».
Вместе с другими она ставит под сомнение допущение, которому следует почти каждый физик и философ со времен Демокрита, что пространство является глубочайшим уровнем физической реальности. Подобно тому, как сценарий пьесы описывает действия актеров на сцене, но предшествует сцене, законы физики традиционно принимают существование пространства как должное. Сегодня мы знаем, что вселенная — это нечто большее, чем просто вещи, расположенные в пространстве. Явление нелокальности перепрыгивает пространство; нет никакого места, где бы оно было ограничено. Оно проявляется на уровне реальности глубже пространства, где уже не имеют значения понятие расстояния, где далекие вещи находятся будто бы рядом, словно одна и та же вещь проявляется больше чем в одном месте, подобно многочисленным изображениям одного стеклышка в калейдоскопе.

Когда мы задумываемся о терминах на таком уровне, связь между субатомными частицами на лабораторном столе, внутри и снаружи черной дыры и между противоположными частями вселенной уже не кажется такой жуткой. Майкл Хеллер, физик, философ и теолог Папской академии теологии в Кракове, Польша, говорит: «Если вы согласитесь с тем, что на фундаментальном уровне физика нелокальна, все будет вполне естественным, поскольку две частицы, которые находятся далеко друг от друга, пребывают на одном фундаментальном нелокальном уровне. Для них пространство и время не имеют значения». Только когда вы пытаетесь визуализировать эти явления с позиции пространства — что простительно, поскольку мы привыкли так думать — они смущают наше понимание.

Идея глубокого уровня кажется естественной, поскольку, в конце концов, физики всегда к ней стремились. Всякий раз, когда они не могли понять некоторые аспекты нашего мира, они предполагали, что пока не добрались до дна всего этого. Они приближали и видели строительные блоки. То, что жидкая вода может кипеть или замерзать, отчасти загадочно. Но эти преобразования имеют смысл, если представить жидкое, газообразное и твердое состояние не элементарными субстанциями, а разными формами одного фундаментального вещества.

Аристотель считал разные состояния воды различными воплощениями так называемой первичной материи, и атомисты — прозорливо — думали, что атомы перестраиваются в более жесткие или свободные структуры. En masse, эти строительные блоки вещества приобретают свойства, которым по отдельности им не хватает. Точно так же пространство может состоять из частей, которые сами по себе не пространственные. Эти части тоже могут разбираться и пересобираться в непространственные структуры вроде тех, что намекают на черные дыры и Большой Взрыв.

«Пространство-время не может быть фундаментальным, — говорит теоретик Нима Аркани-Хамед. — Оно должно состоять из чего-то более простого».

Это мышление полностью переворачивает физику. Нелокальность больше не загадка; это реальность, а настоящей загадкой становится локальность. Когда мы больше не можем принимать пространство как должное, нам придется объяснить, что это такое и из чего возникает, самостоятельно или в процессе объединения со временем.

Очевидно, строительство пространства не будет таким же простым, как слияние молекул в жидкость. Какими могли бы быть его строительные блоки? Обычно мы говорим, что строительные блоки должны быть меньше вещей, которые из них состоят. Если собрать подробную Эйфелеву башню из зубочисток, вам не придется объяснять, что зубочистки меньше башни.

Но когда дело доходит до пространства, нет никакого «меньше», поскольку размер сам по себе это пространственное понятие. Строительные блоки не могут предшествовать пространству, если оно должно их объяснять. У них не должно быть ни размера, ни места; они должны быть повсюду, по всей вселенной и нигде одновременно, чтобы в них нельзя было ткнуть. Что для вещи будет означать отсутствие позиции? Где она будет? «Когда мы говорим о вытекающем пространстве-времени, оно должно вытекать из неких рамок, от которых мы очень далеки», — говорит Аркани-Хамед.

В западной философии царство за пределами пространства традиционно считалось царством за пределами физики — местом присутствия Бога в христианской теологии. В начале 18 века «монады» Готфрида Лейбница — который он представлял примитивными элементами вселенной — существовали, подобно Богу, вне пространства и времени. Его теория была шагом в сторону возникающего пространства-времени, но оставалась в области метафизики, будучи слабо связанной с миром конкретных вещей. Если физики преуспеют в объяснении возникающего пространства, им придется разработать и собственную концепцию отсутствия пространства.

Эйнштейн предвидел эти трудности. «Возможно… мы должны отказаться, в принципе, от пространственно-временного континуума, — писал он. — Вполне можно представить, что изобретательность человека однажды найдет методы, которые сделают этот путь возможным. В настоящее время, впрочем, такая программа выглядит как попытка дышать в пустом космосе».

Джон Уилер, известный теоретик гравитации, предположил, что пространство-время построено из «прегеометории», но признал, что это просто «идея ради идеи». Даже Аркани-Хамед разделяет его сомнения: «Эти проблемы очень сложные. Обсуждать их привычным для нас языком невозможно».

Что заставляет Аркани-Хамед и его коллег продолжать, так это обнаружение своего рода способов, которые описывал Эйнштейн — способов описать физику в отсутствии пространства, вздохнуть в вакууме. Он объясняет эти попытки с точки зрения истории: «2000 с лишним лет люди задавались вопросами о глубокой природе пространства и времени, но они были преждевременными. Мы, наконец, прибыли в ту эпоху, где вы можете задать эти вопросы и надеяться получить некоторые осмысленные ответы». опубликовано  

Автор: Илья Хель

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! ©

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

Источник: hi-news.ru/research-development/iz-chego-moglo-by-sostoyat-prostranstvo-vremya.html

Ученые Корнелльского университета создали прототип «квантовых» денег будущего

Поделиться



Самыми защищенными от подделки, согласно исследованиям Международного банкнотного сообщества (IBNS) признан на сегодня британский фунт стерлингов и австралийский доллар. Вместе с тем, подделать и эти денежные знаки при современном уровне технологий вполне реально. Используя алгоритмы шифрования, основанные на кодировании квантовых состояний фотонов, ученым Корнелльского университета удалось найти способ создания денежных купюр, подделать которые практически невозможно. Подробнее о «квантовых» деньгах будущего мы расскажем в сегодняшней публикации.




Читать дальше →

Квантовые частицы могут быть соединены через червоточины пространства-времени

Поделиться